
nfcpy documentation
Release 0.13.6

Stephen Tiedemann

June 06, 2019

Contents

1 Overview 3
1.1 Requirements . 3
1.2 Supported Devices . 3
1.3 Implementation Status . 5
1.4 References . 5

2 Getting started 7
2.1 Installation . 7
2.2 Open a local device . 9
2.3 Read and write tags . 10
2.4 Emulate a card . 12
2.5 Work with a peer . 13

3 NFC Data Exchange Format 15
3.1 Parsing NDEF . 15
3.2 Creating NDEF . 17
3.3 Specific Records . 18

4 Logical Link Control Protocol 19

5 Simple NDEF Exchange Protocol 23
5.1 Default Server . 24
5.2 Using SNEP Put . 25
5.3 Private Servers . 25

6 Example Programs 29
6.1 tagtool.py . 29
6.2 ndeftool.py . 35
6.3 beam.py . 40
6.4 sense.py . 44
6.5 listen.py . 46
6.6 rfstate.py . 51

7 Interoperability Tests 55
7.1 Logical Link Control Protocol . 55
7.2 Simple NDEF Exchange Protocol . 62
7.3 Connection Handover . 67

i

7.4 Personal Health Device Communication . 72
7.5 Generate Test Tags . 78

8 Module Reference 83
8.1 nfc . 83
8.2 nfc.clf . 83
8.3 nfc.tag . 84
8.4 nfc.ndef . 85
8.5 nfc.llcp . 87
8.6 nfc.snep . 87
8.7 nfc.handover . 87

Index 89

ii

nfcpy documentation, Release 0.13.6

This documentation covers the ‘0.13.6’ version of nfcpy. There are also other versions.

The nfcpy module implements NFC Forum specifications for wireless short-range data exchange with NFC devices
and tags. It is written in Python and aims to provide an easy-to-use yet powerful framework for applications integrating
NFC. The source code is licensed under the EUPL and hosted at GitHub. The latest release version can be installed
from PyPI with pip install -U nfcpy.

To send a web link to a smartphone:

import nfc
import ndef
from threading import Thread

def beam(llc):
snep_client = nfc.snep.SnepClient(llc)
snep_client.put_records([ndef.UriRecord('http://nfcpy.org')])

def connected(llc):
Thread(target=beam, args=(llc,)).start()
return True

with nfc.ContactlessFrontend('usb') as clf:
clf.connect(llcp={'on-connect': connected})

There are also a number of Example Programs that can be used from the command line:

$ examples/beam.py send link http://nfcpy.org

Contents 1

https://readthedocs.org/projects/nfcpy/versions
http://nfc-forum.org/
https://www.python.org
http://ec.europa.eu/idabc/eupl
https://github.com/nfcpy/nfcpy
https://pypi.python.org/pypi/nfcpy

nfcpy documentation, Release 0.13.6

2 Contents

CHAPTER 1

Overview

1.1 Requirements

• Python version 2.6 or newer (but not Python 3)

• Python usb1 module to access USB devices through libusb

• Python serial module to access serial (incl. FTDI) devices

• Python docopt module for some of the example programs

1.2 Supported Devices

The contactless devices known to be working with nfcpy are listed below with the device path column showing the full
path argument for the nfc.clf.ContactlessFrontend.open() method or the --device option that most
example programs support. The testbed column shows the devices that are regularly tested with nfcpy.

3

https://www.python.org
https://github.com/vpelletier/python-libusb1
http://libusb.info
http://pythonhosted.org/pyserial/
https://github.com/docopt/docopt

nfcpy documentation, Release 0.13.6

Manufacturer Product NFC Chip Device Path Testbed Notes
Sony RC-S330 RC-S956 usb:054c:02e1 Yes 1

Sony RC-S360 RC-S956 usb:054c:02e1 Yes 1

Sony RC-S370 RC-S956 usb:054c:02e1 No 1

Sony RC-S380/S Port100 usb:054c:06c1 Yes 2

Sony RC-S380/P Port100 usb:054c:06c3 No 2

Sony Board PN531v4.2 usb:054c:0193 Yes 3

Philips/NXP Board PN531v4.2 usb:04cc:0531 Yes 3

Identive SCL3710 PN531 usb:04cc:0531 No 4

ACS ACR122U PN532v1.4 usb:072f:2200 Yes 5

ACS ACR122U PN532v1.6 usb:072f:2200 Yes 5

Stollmann Reader PN532v1.4 tty:USB0:pn532 Yes 6

Adafruit Board PN532v1.6 tty:AMA0:pn532 Yes 7

Identive SCL3711 PN533v2.7 usb:04e6:5591 Yes 8

Identive SCL3712 PN533 usb:04e6:5593 No 9

SensorID StickID PN533v2.7 usb:04cc:2533 Yes 10

Arygon ADRA PN531v4.2 tty:USB0:arygon Yes

1.2.1 Functional Support

The following table summarizes the functional support level of the supported devices. Identical devices are aggregated
under one of the product names. Only testbed devices are covered. In the table an x means that the function is
supported by hardware and software while an o means that the hardware would support but but the software not
yet implemented. More information about individual driver / hardware restrictions can be found in the nfc.clf
documentation.

Tag Read/Write Tag Emulation Peer2Peer
1 2 3 4A 4B 1 2 3 4A 4B I T ac

RC-S380 x x x x x o x o x x
RC-S956 x x x x o o x x
PN533 x x x x x o x o x x x
PN532 x x x x x o x o x x x
PN531 x x x o o x x x
ACR122U x x x x x

1 The Sony RC-S330, RC-S360, and RC-S370 are in fact identical devicess, the difference is only in size and thus antenna.
2 The only known difference between RC-S380/S and RC-S380/P is that the RC-380/S has the CE and FCC certification marks for sales in

Europe and US.
3 This is a reference board that was once designed by Philips and Sony and has a hardware switch to select either the Philips or Sony USB

Vendor/Product ID. The chip can only handle Type A and Type F technology.
4 This device is supported as a standard PN531. It has been reported to work as expected but is not part of regular testing.
5 While the ACR122U internally uses a PN532 contactless chip the functionality provided by a PN532 can not be fully used due to an additional

controller that implements a USB-CCID interface (for PC/SC) towards the host. It is possible using PCSC_Escape commands to unleash some
functionality but this this is not equivalent to directly accessing a PN532. It is not recommended to buy this device for use with nfcpy.

6 The path shown is for Ubuntu Linux in case the reader is the first UART/USB bridge found by the OS. Also on Windows OS the path is slightly
different (com:COM1:pn532).

7 This is sold by Adafruit as “PN532 NFC/RFID Controller Breakout Board” and can directly be connected to a serial port of, for example, a
Raspberry Pi (the device path shown is for the Raspberry Pi’s UART, when using a USB/UART bridge it would be usb:USB0:pn532). Note that
the serial link speed is only 115200 baud when connected at /dev/ttyAMA0 while with a USB/UART bridge it may be up to 921600 baud (on Linux
the driver tries to figure this out).

8 The SCL3711 has a relatively small antenna that winds around the circuitry and may be the reason for less superior performance when operating
as a target in passive communication mode (where the external field must be modulated).

9 The SCL3712 has been reported to work but is not available for regular testing.
10 The SensorID USB stick is a native PN533. It has no EEPROM attached and thus uses the default NXP Vendor/Product IDs from the ROM

code. Absence of an EEPROM also means that the firmware uses default RF settings.

4 Chapter 1. Overview

nfcpy documentation, Release 0.13.6

1.2.2 General Notes

• Testbed devices are verified to work with the latest stable nfcpy release. Test platforms are Ubuntu Linux
(usually the latest version), Raspbian (with Raspberry Pi 2 Model B), and Windows (currently a Windows 7
virtual machine). No tests are done for MAC OS X because of lack of hardware.

• All device architectures with a PN532 or PN533 suffer from a firmware bug concerning Type 1 Tags with
dynamic memory layout (e.g. the Topaz 512). With nfcpy version 0.10 this restriction could be removed by
directly adressing the Contactless Interface Unit (CIU) within the chip.

• The ACR122U is not supported as P2P Target because the listen time can not be set to less than 5 seconds. It
can not be overstated that the ACR122U is not a good choice for nfcpy.

1.3 Implementation Status

Specification Status
TS NFC Digital Protocol 1.1 implemented
TS NFC Activity 1.1 implemented
TS Type 1 Tag Operation 1.2 implemented
TS Type 2 Tag Operation 1.2 implemented
TS Type 3 Tag Operation 1.2 implemented
TS Type 4 Tag Operation 3.0 implemented
TS NFC Data Exchange Format 1.0 except chunking
TS NFC Record Type Definition 1.0 implemented
TS Text Record Type 1.0 implemented
TS URI Record Type 1.0 implemented
TS Smart Poster Record Type 1.0 implemented
TS Signature Record Type not implemented
TS Logical Link Control Protocol 1.3 implemented
TS Simple NDEF Exchange Protocol 1.0 implemented
TS Connection Handover 1.2 implemented
TS Personal Health Communication 1.0 implemented
AD Bluetooth Secure Simple Pairing implemented

1.4 References

• NFC Forum Specifications: http://nfc-forum.org/our-work/specifications-and-application-documents/

1.3. Implementation Status 5

http://nfc-forum.org/our-work/specifications-and-application-documents/

nfcpy documentation, Release 0.13.6

6 Chapter 1. Overview

CHAPTER 2

Getting started

2.1 Installation

NFCPy requires the library libusb for generic access to USB devices.

Install libusb (Linux)

Linux distributions usually have this installed, otherwise it should be available through the standard package manager
(beware not to choose the old version 0.x).

Install libusb (Windows)

Windows users will have to manually install WinUSB and libusb. Microsoft provides instructions to install WinUSB
but a much simpler approach is to use Zadig (a driver installation helper application).

• Download Zadig

• Run the standalone exe

• Click Options -> List All Devices

• Select your NFC reading/writing device from the list

• Select the WinUSB driver from the other drop down and install it

Then, install libusb:

• Download libusb (Downloads -> Latest Windows Binaries).

• Unpack the 7z archive (you may use 7zip).

• For 32-bit Windows:

– Copy MS32\dll\libusb-1.0.dll to C:\Windows\System32.

• For 64-bit Windows:

– Copy MS64\dll\libusb-1.0.dll to C:\Windows\System32.

– Copy MS32\dll\libusb-1.0.dll to C:\Windows\SysWOW64.

7

http://libusb.info/
https://msdn.microsoft.com/en-us/library/ff540196.aspx
http://libusb.info/
https://msdn.microsoft.com/en-us/library/ff540196.aspx
http://zadig.akeo.ie/
http://zadig.akeo.ie/
http://libusb.info/
https://www.7-zip.org/download.html

nfcpy documentation, Release 0.13.6

Install Python and nfcpy

Download and install the latest version of Python 2.7.x (nfcpy does not support Python 3 (yet)1).

Note: Python may already be installed on your system if you are a Linux user.

Once Python is installed use pip to install the latest stable version of nfcpy. This will also install the required libusb1
and pyserial Python modules.

$ pip install -U nfcpy

Windows users will want to ensure they have configured their environment’s PATH correctly, otherwise they will not
be able to access pip on the command line. It is usually located at C:\Python27\Scripts\pip.exe so they
must ensure C:\Python27\Scripts\ is on their PATH.)

Verify installation

Check if everything installed correctly and that nfcpy is able to find your contactless reader.

$ python -m nfc

If all goes well the output should tell that your your reader was found, below is an example of how it may look with
an SCL3711:

This is the latest version of nfcpy run in Python 2.7.12
on Linux-4.4.0-47-generic-x86_64-with-Ubuntu-16.04-xenial
I'm now searching your system for contactless devices

** found SCM Micro SCL3711-NFC&RW PN533v2.7 at usb:002:024
I'm not trying serial devices because you haven't told me
-- add the option '--search-tty' to have me looking
-- but beware that this may break existing connections

Common problems on Linux (access rights or other drivers claiming the device) should be reported with a possible
solution:

This is the latest version of nfcpy run in Python 2.7.12
on Linux-4.4.0-47-generic-x86_64-with-Ubuntu-16.04-xenial
I'm now searching your system for contactless devices

** found usb:04e6:5591 at usb:002:025 but access is denied
-- the device is owned by 'root' but you are 'stephen'
-- also members of the 'root' group would be permitted
-- you could use 'sudo' but this is not recommended
-- it's better to add the device to the 'plugdev' group

sudo sh -c 'echo SUBSYSTEM==\"usb\", ACTION==\"add\", ATTRS{idVendor}==\"04e6\",
→˓ATTRS{idProduct}==\"5591\", GROUP=\"plugdev\" >> /etc/udev/rules.d/nfcdev.rules'

sudo udevadm control -R # then re-attach device
I'm not trying serial devices because you haven't told me
-- add the option '--search-tty' to have me looking
-- but beware that this may break other serial devs
Sorry, but I couldn't find any contactless device

1 https://github.com/nfcpy/nfcpy/issues/47

8 Chapter 2. Getting started

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/
https://github.com/nfcpy/nfcpy/issues/47

nfcpy documentation, Release 0.13.6

2.2 Open a local device

Any data exchange with a remote NFC device needs a contactless frontend attached and opened for communication.
Most commercial devices (also called NFC Reader) are physically attached through USB and either provide a native
USB interface or a virtual serial port.

The nfc.ContactlessFrontend manages all communication with a local device. The open method tries to
find and open a device and returns True for success. The string argument determines the device with a sequence of
components separated by colon. The first component determines where the device is attached (usb, tty, or udp) and
what the further components may be. This is best explained by example.

Suppose a FeliCa S330 Reader is attached to a Linux computer on USB bus number 3 and got device number 9 (note
that device numbers always increment when a device is connected):

$ lsusb
...
Bus 003 Device 009: ID 054c:02e1 Sony Corp. FeliCa S330 [PaSoRi]
...

>>> import nfc
>>> clf = nfc.ContactlessFrontend()
>>> assert clf.open('usb:003:009') is True # open device 9 on bus 3
>>> assert clf.open('usb:054c:02e1') is True # open first PaSoRi 330
>>> assert clf.open('usb:003') is True # open first Reader on bus 3
>>> assert clf.open('usb:054c') is True # open first Sony Reader
>>> assert clf.open('usb') is True # open first USB Reader
>>> clf.close() # previous open calls implicitly closed the device

Some devices, especially for embedded projects, have a UART interface that may be connected either directly or
through a USB UART adapter. Below is an example of a Raspberry Pi 3 which has two UART ports (ttyAMA0,
ttyS0) and one reader is connected with a USB UART adapter (ttyUSB0). On a Raspberry Pi 3 the UART linked from
/dev/serial1 is available on the GPIO header (the other one is used for Bluetooth connectivity). On a Raspberry Pi 2 it
is always ttyAMA0.

pi@raspberrypi ~ $ ls -l /dev/tty[ASU]* /dev/serial?
lrwxrwxrwx 1 root root 5 Dez 21 18:11 /dev/serial0 -> ttyS0
lrwxrwxrwx 1 root root 7 Dez 21 18:11 /dev/serial1 -> ttyAMA0
crw-rw---- 1 root dialout 204, 64 Dez 21 18:11 /dev/ttyAMA0
crw-rw---- 1 root dialout 4, 64 Dez 21 18:11 /dev/ttyS0
crw-rw---- 1 root dialout 188, 0 Feb 24 12:17 /dev/ttyUSB0

>>> import nfc
>>> clf = nfc.ContactlessFrontend()
>>> assert clf.open('tty:USB0:arygon') is True # open /dev/ttyUSB0 with arygon driver
>>> assert clf.open('tty:USB0:pn532') is True # open /dev/ttyUSB0 with pn532 driver
>>> assert clf.open('tty:AMA0') is True # try different drivers on /dev/
→˓ttyAMA0
>>> assert clf.open('tty') is True # try all serial ports and drivers
>>> clf.close() # previous open calls implicitly closed the device

A special kind of device bus that does not require any physical hardware is provided for testing and application
prototyping. It works by sending NFC communication frames across a UDP/IP connection and can be used to connect
two processes running an nfcpy application either locally or remote.

In the following example the device path is supplied as an init argument. This would raise an exceptions.
IOError with errno.ENODEV if it fails to open. The example also demonstrates the use of a with statement
for automatic close when leaving the context.

2.2. Open a local device 9

https://docs.python.org/2.7/library/exceptions.html#exceptions.IOError
https://docs.python.org/2.7/library/exceptions.html#exceptions.IOError
https://docs.python.org/2.7/library/errno.html#errno.ENODEV
https://docs.python.org/2.7/reference/compound_stmts.html#with

nfcpy documentation, Release 0.13.6

>>> import nfc
>>> with nfc.ContactlessFrontend('udp') as clf:
... print(clf)
...
Linux IP-Stack on udp:localhost:54321

2.3 Read and write tags

NFC Tag Devices are tiny electronics devices with a comparatively large (some square centimeters) antenna that serves
as both an inductive power receiver and for communication. The energy is provided by the NFC Reader Device for as
long as it wishes to communicate with the Tag.

Most Tags are embedded in plastics or paper and can store data in persistent memory. NFC Tags as defined by the
NFC Forum have standardized memory format and command set to store NFC Data Exchange Format (NDEF) records.
Most commercial NFC Tags also provide vendor-specific commands for special applications, some of those can be
used with nfcpy. A rather new class of NFC Interface Tags is targeted towards providing NFC communication for
embedded devices where the information exchange is through NFC with the microcontroller of the embedded device.

Tip: It is quite easy to make an NFC field detector. Just a few turns of copper wire around three fingers and the ends
soldered to an LED will do the job. Here’s a video.

NFC Tags are simple slave devices that wait unconditionally for any reader command to respond. This makes it easy
to interact with them from within a Python interpreter session using the local contactless frontend.

>>> import nfc
>>> clf = nfc.ContactlessFrontend('usb')

The clf.sense() method can now be used to search for a proximity target with arguments set for the desired
communication technologies. The example shows the result of a Type F card response for which the nfc.tag.
activate() function then returns a Type3Tag instance.

>>> from nfc.clf import RemoteTarget
>>> target = clf.sense(RemoteTarget('106A'), RemoteTarget('106B'), RemoteTarget('212F
→˓'))
>>> print(target)
212F sensf_res=0101010701260CCA020F0D23042F7783FF12FC
>>> tag = nfc.tag.activate(clf, target)
>>> print(tag)
Type3Tag 'FeliCa Standard (RC-S960)' ID=01010701260CCA02 PMM=0F0D23042F7783FF SYS=12FC

The same Type3Tag instance can also be acquired with the clf.connect() method. This is the generally pre-
ferred way to discover and activate contactless targets of any supported type. When configured with the rdwr dictionary
argument the clf.connect() method will use Reader/Writer mode to discover NFC Tags. When a Tag is found
and activated, the on-connect callback function returning False means that the tag presence loop shall not be run
but the nfc.tag.Tag object returned immediately. A more useful callback function could do something with the
tag and return True for requesting a presence loop that makes clf.connect() return only after the tag is gone.

>>> tag = clf.connect(rdwr={'on-connect': lambda tag: False})
>>> print(tag)
Type3Tag 'FeliCa Standard (RC-S960)' ID=01010701260CCA02 PMM=0F0D23042F7783FF SYS=12FC

An NFC Forum Tag can store NFC Data Exchange Format (NDEF) Records in a specifically formatted memory
region. NDEF data is found automatically and wrapped into an NDEF object accessible through the tag.ndef

10 Chapter 2. Getting started

https://www.youtube.com/watch?v=dTv4U5fotM0

nfcpy documentation, Release 0.13.6

attribute. When NDEF data is not present the attribute is simply None.

>>> assert tag.ndef is not None
>>> for record in tag.ndef.records:
... print(record)
...
NDEF Uri Record ID '' Resource 'http://nfcpy.org'

The tag.ndef.records attribute contains a list of NDEF Records decoded from tag.ndef.octets with the
ndeflib package. Each record has common and type-specific methods and attributes for content access.

>>> record = tag.ndef.records[0]
>>> print(record.type)
urn:nfc:wkt:U
>>> print(record.uri)
http://nfcpy.org

A list of NDEF Records assigned to tag.ndef.records gets encoded and then written to the Tag (internally the
bytes are assigned to tag.ndef.octets to trigger the update).

>>> import ndef
>>> uri, title = 'http://nfcpy.org', 'nfcpy project'
>>> tag.ndef.records = [ndef.SmartposterRecord(uri, title)]

When NDEF data bytes are written to a Memory Tag then the tag.ndef object matches the stored data. In case
of an Interface Tag this may not be true because the write commands may be handled differently by the device. The
only way to find out is read back the data and compare. This is the logic behind tag.ndef.has_changed, which
should be False for a Memory Tag.

>>> assert tag.ndef.has_changed is False

An NFC Interface Tag may be used to realize a device that presents dynamically changing NDEF data depending on
internal state, for example a sensor device returning the current temperature.

>>> tag = clf.connect(rdwr={'on-connect': lambda tag: False})
>>> print(tag)
Type3Tag 'FeliCa Link (RC-S730) Plug Mode' ID=03FEFFFFFFFFFFFF PMM=00E1000000FFFF00
→˓SYS=12FC
>>> assert tag.ndef is not None and tag.ndef.length > 0
>>> assert tag.ndef.records[0].type == 'urn:nfc:wkt:T'
>>> print('Temperature 0: {}'.format(tag.ndef.records[0].text))
Temperature 0: +21.3 C
>>> for count in range(1, 4):
... while not tag.ndef.has_changed: time.sleep(1)
... print('Temperature {}: {}'.format(count, tag.ndef.records[0].text))
...
Temperature 1: +21.0 C
Temperature 2: +20.5 C
Temperature 3: +20.1 C

Finally the contactless frontend should be closed.

>>> clf.close()

Documentation of all available Tag classes as well as NDEF class methods and attributes can be found in the nfc.tag
module reference. For NDEF Record class types, methods and attributes consult the ndeflib documentation.

2.3. Read and write tags 11

http://ndeflib.readthedocs.io/en/stable/
http://ndeflib.readthedocs.io/en/stable/

nfcpy documentation, Release 0.13.6

2.4 Emulate a card

It is possible to emulate a card (NFC Tag) with nfcpy but unfortunately this only works with some NFC devices and is
limited to Type 3 Tag emulation. The RC-S380 fully supports Type 3 Tag emulation. Devices based on PN532, PN533,
or RC-S956 chipset can also be used but an internal frame size limit of 64 byte only allows read/write operations with
up to 3 data blocks.

Below is an example of an NDEF formatted Type 3 Tag. The first 16 byte (first data block) contain the attribute data
by which the reader will learn the NDEF version, the number of data blocks that can be read or written in a single
command, the total capacity and the write permission state. Bytes 11 to 13 contain the current NDEF message length,
initialized to zero. The example is made to specifically open only an RC-S380 contactless frontend (otherwise the
number of blocks that may be read or written should not be more than 3).

import nfc
import struct

ndef_data_area = bytearray(64 * 16)
ndef_data_area[0] = 0x10 # NDEF mapping version '1.0'
ndef_data_area[1] = 12 # Number of blocks that may be read at once
ndef_data_area[2] = 8 # Number of blocks that may be written at once
ndef_data_area[4] = 63 # Number of blocks available for NDEF data
ndef_data_area[10] = 1 # NDEF read and write operations are allowed
ndef_data_area[14:16] = struct.pack('>H', sum(ndef_data_area[0:14])) # Checksum

def ndef_read(block_number, rb, re):
if block_number < len(ndef_data_area) / 16:

first, last = block_number*16, (block_number+1)*16
block_data = ndef_data_area[first:last]
return block_data

def ndef_write(block_number, block_data, wb, we):
global ndef_data_area
if block_number < len(ndef_data_area) / 16:

first, last = block_number*16, (block_number+1)*16
ndef_data_area[first:last] = block_data
return True

def on_startup(target):
idm, pmm, sys = '03FEFFE011223344', '01E0000000FFFF00', '12FC'
target.sensf_res = bytearray.fromhex('01' + idm + pmm + sys)
target.brty = "212F"
return target

def on_connect(tag):
print("tag activated")
tag.add_service(0x0009, ndef_read, ndef_write)
tag.add_service(0x000B, ndef_read, lambda: False)
return True

with nfc.ContactlessFrontend('usb:054c:06c1') as clf:
while clf.connect(card={'on-startup': on_startup, 'on-connect': on_connect}):

print("tag released")

This is a fully functional NFC Forum Type 3 Tag. With a separate reader or Android apps such as NXP Tag Info and
NXP Tag Writer, NDEF data can now be written into the ndef_data_area and read back until the loop is terminated
with Control-C.

12 Chapter 2. Getting started

https://play.google.com/store/apps/details?id=com.nxp.taginfolite
https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter

nfcpy documentation, Release 0.13.6

2.5 Work with a peer

The best part of NFC comes when the limitations of a single master controlling a humble servant are overcome. This
is achieved by the NFC Forum Logical Link Control Protocol (LLCP), which allows multiplexed communications
between two NFC Forum Devices with either peer able to send protocol data units at any time and no restriction to a
single application run in one direction.

An LLCP link between two NFC devices is requested with the llcp argument to clf.connect().

>>> import nfc
>>> clf = ContactlessFrontend('usb')
>>> clf.connect(llcp={}) # now touch a phone
True

When the first example got LLCP running there is actually just symmetry packets exchanged back and forth until the
link is broken. We have to use callback functions to add some useful stuff.

>>> def on_connect(llc):
... print llc; return True
...
>>> clf.connect(llcp={'on-connect': connected})
LLC: Local(MIU=128, LTO=100ms) Remote(MIU=1024, LTO=500ms)
True

The on_connect function receives a single argument llc, which is the LogicalLinkController instance coor-
dinates aal data exchange with the remote peer. With this we can add client applications but they must be run in a
separate execution context to have on_connect return fast. Only after on_connect returns, the llc can start running the
symmetry loop (the LLCP heartbeat) with the remote peer and generally receive and dispatch protocol and service
data units.

When using the interactive interpreter it is less convinient to program in the callback functions so we will start a thread
in the callback to execute the llc.run* loop and return with False. This tells clf.connect() to return immediately
with the llc instance).

>>> import threading
>>> def on_connect(llc):
... threading.Thread(target=llc.run).start(); return False
...
>>> llc = clf.connect(llcp={'on-connect': on_connect})
>>> print llc
LLC: Local(MIU=128, LTO=100ms) Remote(MIU=1024, LTO=500ms)

Application code is not supposed to work directly with the llc object but use it to create Socket objects for the actual
communication. Two types of regular sockets can be created with either nfc.llcp.LOGICAL_DATA_LINK for
a connection-less socket or nfc.llcp.DATA_LINK_CONNECTION for a connection-mode socket. A connection-
less socket does not guarantee that application data is delivered to the remote application (although nfcpy makes sure
that it’s been delivered to the remote device). A connection-mode socket cares about reliability, unless the other
implementation is buggy data you send is guaranteed to make it to the receiving application - error-free and in order.

What can be done with an Android phone as the peer device is for example to send to its default SNEP Server. SNEP
is the NFC Forum Simple NDEF Exchange Protocol and a default SNEP Server is built into Android under the name
of Android Beam. SNEP messages are exchanged over an LLCP data link connection so we create a connection mode
socket, connect to the server with the service name known from the NFC Forum Assigned Numbers Register and then
send a SNEP PUT request with a web link to open.

2.5. Work with a peer 13

http://members.nfc-forum.org/specs/nfc_forum_assigned_numbers_register

nfcpy documentation, Release 0.13.6

>>> import ndef
>>> socket = nfc.llcp.Socket(llc, nfc.llcp.DATA_LINK_CONNECTION)
>>> socket.connect('urn:nfc:sn:snep')
>>> records = [ndef.UriRecord("http://nfcpy.org")]
>>> message = b''.join(ndef.message_encoder(records))
>>> socket.send("\x10\x02\x00\x00\x00" + chr(len(message)) + message)
>>> socket.recv()
'\x10\x81\x00\x00\x00\x00'
>>> socket.close()

The phone should now have opened the http://nfcpy.org web page.

The code can be simplified by using the SnepClient from the nfc.snep package.

>>> import nfc.snep
>>> snep = nfc.snep.SnepClient(llc)
>>> snep.put_records([ndef.UriRecord("http://nfcpy.org")])
True

The put() method is smart enough to temporarily connect to urn:nfc.sn:snep for sending. There are also
methods to open and close the connection explicitely and maybe use a different service name.

Note: The Logical Link Control Protocol tutorial has more information on LLCP in general and how its used with
nfcpy. The nfc.llcp package documentation contains describes all the API classes and methods that are available.

14 Chapter 2. Getting started

http://nfcpy.org

CHAPTER 3

NFC Data Exchange Format

NDEF (NFC Data Exchange Format) is a binary message format to exchange application-defined payloads between
NFC Forum Devices or to store payloads on an NFC Forum Tag. A payload is described by a type, a length and an
optional identifer encoded in an NDEF record structure. An NDEF message is a sequence of NDEF records with a
begin marker in the first and an end marker in the last record.

NDEF decoding and encoding is provided by the nfc.ndef module.

>>> import nfc.ndef

3.1 Parsing NDEF

An nfc.ndef.Message class can be initialized with an NDEF message octet string to parse that data into the
sequence of NDEF records framed by the begin and end marker of the first and last record. Each NDEF record
is represented by an nfc.ndef.Record object accessible through indexing or iteration over the nfc.ndef.
Message object.

>>> import nfc.ndef
>>> message = nfc.ndef.Message(b'\xD1\x01\x0ET\x02enHello World')
>>> message
nfc.ndef.Message([nfc.ndef.Record('urn:nfc:wkt:T', '', '\x02enHello World')])
>>> len(message)
1
>>> message[0]

(continues on next page)

15

nfcpy documentation, Release 0.13.6

(continued from previous page)

nfc.ndef.Record('urn:nfc:wkt:T', '', '\x02enHello World')
>>> for record in message:
>>> record.type, record.name, record.data
>>>
('urn:nfc:wkt:T', '', '\x02enHello World')

An NDEF record carries three parameters for describing its payload: the payload length, the payload type, and an
optional payload identifier. The nfc.ndef.Record.data attribute provides access to the payload and the payload
length is obtained by len(). The nfc.ndef.Record.name attribute holds the payload identifier and is an empty
string if no identifer was present in the NDEF date. The nfc.ndef.Record.type identifies the type of the
payload as a combination of the NDEF Type Name Format (TNF) field and the type name itself.

Empty (TNF 0)

An Empty record type (expressed as a zero-length string) indicates that there is no type or payload associ-
ated with this record. Encoding a record of this type will exclude the name (payload identifier) and data
(payload) contents. This type can be used whenever an empty record is needed; for example, to terminate
an NDEF message in cases where there is no payload defined by the user application.

NFC Forum Well Known Type (TNF 1)

An NFC Forum Well Known Type is a URN as defined by RFC 2141, with the namespace identifier (NID)
“nfc”. The Namespace Specific String (NSS) of the NFC Well Known Type URN is prefixed with “wkt:”.
When encoded in an NDEF message, the Well Known Type is written as a relative-URI construct (cf.
RFC 3986), omitting the NID and the “wkt:” -prefix. For example, the type “urn:nfc:wkt:T” will be
encoded as TNF 1, TYPE “T”.

Media-type as defined in RFC 2046 (TNF 2)

A media-type follows the media-type BNF construct defined by RFC 2046. Records that carry a payload
with an existing, registered media type should use this record type. Note that the record type indicates the
type of the payload; it does not refer to a MIME message that contains an entity of the given type. For
example, the media type ‘image/jpeg’ indicates that the payload is an image in JPEG format using JFIF
encoding as defined by RFC 2046.

Absolute URI as defined in RFC 3986 (TNF 3)

An absolute-URI follows the absolute-URI BNF construct defined by RFC 3986. This type can be used
for message types that are defined by URIs. For example, records that carry a payload with an XML-
based message type may use the XML namespace identifier of the root element as the record type, like a
SOAP/1.1 message may be represented by the URI ‘http://schemas.xmlsoap.org/soap/envelope/’.

NFC Forum External Type (TNF 4)

An NFC Forum External Type is a URN as defined by RFC 2141, with the namespace identifier (NID)
“nfc”. The Namespace Specific String (NSS) of the NFC Well Known Type URN is prefixed with “ext:”.
When encoded in an NDEF message, the External Type is written as a relative-URI construct (cf. RFC
3986), omitting the NID and the “ext:” -prefix. For example, the type “urn:nfc:ext:nfcpy.org:T” will be
encoded as TNF 4, TYPE “nfcpy.org:T”.

Unknown (TNF 5)

An Unknown record type (expressed by the string “unknown”) indicates that the type of the payload is
unknown, similar to the “application/octet-stream” media type.

Unchanged (TNF 6)

An Unchanged record type (expressed by the string “unchanged”) is used in middle record chunks and
the terminating record chunk used in chunked payloads. This type is not allowed in any other record.

16 Chapter 3. NFC Data Exchange Format

https://docs.python.org/2.7/library/functions.html#len
https://tools.ietf.org/html/rfc2141.html
https://tools.ietf.org/html/rfc3986.html
urn:nfc:wkt:T
https://tools.ietf.org/html/rfc2046.html
https://tools.ietf.org/html/rfc2046.html
https://tools.ietf.org/html/rfc3986.html
http://schemas.xmlsoap.org/soap/envelope/
https://tools.ietf.org/html/rfc2141.html
https://tools.ietf.org/html/rfc3986.html
https://tools.ietf.org/html/rfc3986.html
urn:nfc:ext:nfcpy.org:T

nfcpy documentation, Release 0.13.6

>>> import nfc.ndef
>>> message = nfc.ndef.Message('\xD0\x00\x00')
>>> nfc.ndef.Message('\xD0\x00\x00')[0].type
''
>>> nfc.ndef.Message('\xD1\x01\x00T')[0].type
'urn:nfc:wkt:T'
>>> nfc.ndef.Message('\xD2\x0A\x00text/plain')[0].type
'text/plain'
>>> nfc.ndef.Message('\xD3\x16\x00http://example.org/dtd')[0].type
'http://example.org/dtd'
>>> nfc.ndef.Message('\xD4\x10\x00example.org:Text')[0].type
'urn:nfc:ext:example.org:Text'
>>> nfc.ndef.Message('\xD5\x00\x00')[0].type
'unknown'
>>> nfc.ndef.Message('\xD6\x00\x00')[0].type
'unchanged'

The type and name of the first record, by convention, provide the processing context and identification not only for the
first record but for the whole NDEF message. The nfc.ndef.Message.type and nfc.ndef.Message.name
attributes map to the type and name attributes of the first record in the message.

>>> message = nfc.ndef.Message(b'\xD1\x01\x0ET\x02enHello World')
>>> message.type, message.name
('urn:nfc:wkt:T', '')

If invalid or insufficient data is provided to the NDEF message parser, an nfc.ndef.FormatError or nfc.
ndef.LengthError is raised.

>>> try: nfc.ndef.Message('\xD0\x01\x00')
... except nfc.ndef.LengthError as e: print e
...
insufficient data to parse
>>> try: nfc.ndef.Message('\xD0\x01\x00T')
... except nfc.ndef.FormatError as e: print e
...
ndef type name format 0 doesn't allow a type string

3.2 Creating NDEF

An nfc.ndef.Record class can be initialized with an NDEF

To build NDEF messages use the nfc.ndef.Record class to create records and instantiate an nfc.ndef.
Message object with the records as arguments.

>>> import nfc.ndef
>>> record1 = nfc.ndef.Record("urn:nfc:wkt:T", "id1", "\x02enHello World!")
>>> record2 = nfc.ndef.Record("urn:nfc:wkt:T", "id2", "\x02deHallo Welt!")
>>> message = nfc.ndef.Message(record1, record2)

The nfc.ndef.Message class also accepts a list of records as a single argument and it is possible to nfc.ndef.
Message.append() records or nfc.ndef.Message.extend() a message with a list of records.

>>> message = nfc.ndef.Message()
>>> message.append(record1)
>>> message.extend([record2, record3])

3.2. Creating NDEF 17

nfcpy documentation, Release 0.13.6

The serialized form of an nfc.ndef.Message object is produced with str().

>>> message = nfc.ndef.Message(record1, record2)
>>> str(message)
'\x99\x01\x0f\x03Tid1\x02enHello World!Y\x01\x0e\x03Tid2\x02deHallo Welt!'

3.3 Specific Records

3.3.1 Text Record

>>> import nfc.ndef
>>> record = nfc.ndef.TextRecord("Hello World!")
>>> print record.pretty()
text = Hello World!
language = en
encoding = UTF-8

3.3.2 Uri Record

>>> import nfc.ndef
>>> record = nfc.ndef.UriRecord("http://nfcpy.org")
>>> print record.pretty()
uri = http://nfcpy.org

3.3.3 Smart Poster Record

>>> import nfc.ndef
>>> uri = "https://launchpad.net/nfcpy"
>>> record = nfc.ndef.SmartPosterRecord(uri)
>>> record.title = "Python module for near field communication"
>>> record.title['de'] = "Python Modul für Nahfeldkommunikation"
>>> print record.pretty()
resource = https://launchpad.net/nfcpy
title[de] = Python Modul für Nahfeldkommunikation
title[en] = Python module for near field communication
action = default

18 Chapter 3. NFC Data Exchange Format

CHAPTER 4

Logical Link Control Protocol

The Logical Link Control Protocol allows multiplexed communications between two NFC Forum Peer Devices where
either peer can send protocol data units at any time (asynchronous balanced mode). The communication endpoints
are called Service Access Points (SAP) and are addressed by a 6 bit numerical identifier. Protocol data units are
exchanged between exactly two service access points, from a source SAP (SSAP) to a destination SAP (DSAP). The
service access point address space is split into 3 parts: an address between 0 and 15 identifies a well-known service,
an address between 16 and 31 identifies a service that is registered in the local service environment, and addresses
between 32 and 63 are unregistered and normally used as a source address by client applications that send or connect
to peer services.

The interface to realize LLCP client and server applications in nfcpy is implemented by the nfc.llcp.Socket
class. A socket is created with a LogicalLinkController instance and the socket type as arguments to the
Socket constructor. The nfc.ContactlessFrontend.connect() method accepts callback functions that
will receive the active LogicalLinkController instance as argument.

import nfc
import nfc.llcp

def client(socket):
socket.sendto("message", addr=16)

def connected(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.LOGICAL_DATA_LINK)
Thread(target=client, args=(socket,)).start()
return True

clf = nfc.ContactlessFrontend()
clf.connect(llcp={'on-connect': connected})

Although service access points are generally identified by a numerical address, the LLCP service discovery component
allows SAPs to be associated with a globally unique service name and become discoverable by remote applications.
A service name may represent either an NFC Forum well-known or an externally defined service name.

• The format urn:nfc:sn:<servicename> represents a well-known service name, for example the service
name urn:nfc:sn:snep identifies the NFC Forum Simple NDEF Data Exchange (SNEP) default server.

19

nfcpy documentation, Release 0.13.6

• The format urn:nfc:xsn:<domain>:<servicename> represents a service name that is defined by the
domain owner, for example the service name urn:nfc:xsn:nfc-forum.org:snep-validation is
the service name of a special SNEP server used by the NFC Forum during validation of the SNEP secification.

In nfcpy a service name can be registered with Socket.bind() and a service name string as the address parameter.
The allocated service access point address number can then be retrived with getsockname(). A remote service
name can be resolved into a service access point address number with resolve().

def server(socket):
message, address = socket.recvfrom()
socket.sendto("It's me!", address)

def client(socket):
address = socket.resolve('urn:nfc:xsn:nfcpy.org:test-service')
socket.sendto("Hi there!", address)
message, address = socket.recvfrom()
print("SAP {0} said: {1}".format(address, message))

def startup(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.LOGICAL_DATA_LINK)
socket.bind('urn:nfc:xsn:nfcpy.org:test-service')
print("server bound to SAP {0}".format(socket.getsockname()))
Thread(target=server, args=(socket,)).start()
return llc

def connected(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.LOGICAL_DATA_LINK)
Thread(target=client, args=(socket,)).start()
return True

clf = nfc.ContactlessFrontend()
clf.connect(llcp={'on-startup': startup, 'on-connect': connected})

Connection-mode sockets must be connected before data can be exchanged. For a server socket this involves calls to
bind(), listen() and accept(), and for a client socket to call resolve() and connect() with the address
returned by resolve() or to simply call connect() with the service name as address (note that resolve()
becomes more efficient when queries for multiple service names are needed).

def server(socket):
note that this server only accepts one connection
for multiple connections spawn a thread per accept
while True:

client = socket.accept()
while True:

message = client.recv()
print("Client said: {0}".format(message))
client.send("It's me!")

def client(socket):
socket.connect('urn:nfc:xsn:nfcpy.org:test-service')
socket.send("Hi there!")
message = socket.recv()
print("Server said: {0}".format(message))

def startup(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.DATA_LINK_CONNECTION)
socket.bind('urn:nfc:xsn:nfcpy.org:test-service')
print("server bound to SAP {0}".format(socket.getsockname()))

(continues on next page)

20 Chapter 4. Logical Link Control Protocol

nfcpy documentation, Release 0.13.6

(continued from previous page)

socket.listen()
Thread(target=server, args=(socket,)).start()
return llc

def connected(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.DATA_LINK_CONNECTION)
Thread(target=client, args=(socket,)).start()
return True

clf = nfc.ContactlessFrontend()
clf.connect(llcp={'on-startup': startup, 'on-connect': connected})

Data can be send and received with sendto() and recvfrom() on connection-less sockets and send() and
recv() on connection-mode sockets. Send data is guaranteed to be delivered to the remote device when the send
methods return (although not necessarily to the remote service access point - only for a connection-mode socket this
can be safely assumed but note that even then data may not yet have been arrived at the service user). Receiving data
with either recv() or recvfrom() blocks until some data has become available or all LLCP communication has
been terminated (if either one peer intentionally closes the LLCP Link or the devices are moved out of communication
range). To implement a communication timeout during normal operation, the poll() method can be used to waI will
“fix” this bug by adding to the documentationI will “fix” this bug by adding to the documentationit for a ‘recv’ event
with a given timeout.

def client(socket):
socket.connect('urn:nfc:xsn:nfcpy.org:test-service')
socket.send("Hi there!")
if socket.poll('recv', timeout=1.0):

message = socket.recv()
print("Server said: {0}".format(message))

else:
print("Server said nothing within 1 second")

Sockets of type nfc.llcp.LOGICAL_DATA_LINK, DATA_LINK_CONNECTION and RAW_ACCESS_POINT
(which should normally not be used) do not provide fragmentation for messages that do not fit into a single protocol
data unit but raise an nfc.llcp.Error exception with errno.EMSGSIZE. An application can learn the maxi-
mum nuber of bytes for sending or receiving by calling getsockopt() with option nfc.llcp.SO_SNDMIU or
nfc.llcp.SO_RCVMIU.

send_miu = socket.getsockopt(nfc.llcp.SO_SNDMIU)
recv_miu = socket.getsockopt(nfc.llcp.SO_RCVMIU)

When opening or accepting a data link connection an application may specify the maximum number of octets to
receive with the nfc.llcp.SO_RCVMIU option in setsockopt(). The value must be between 128 and 2176,
inclusively. If the RCVMIU is not explicitely set for a data link connection the default value applied by the peer is 128
octets.

On connection-mode sockets options nfc.llcp.SO_SNDBUF and nfc.llcp.SO_RCVBUF can be used to learn
the local and remote receive window values established during connection setup. The local receive window can also
be set with setsockopt() before the socket gets connected.

def server(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.DATA_LINK_CONNECTION)
socket.setsockopt(nfc.llcp.SO_RCVMIU, 1000)
socket.setsockopt(nfc.llcp.SO_RCVBUF, 2)
socket.bind("urn:nfc:sn:snep")
socket.listen()

(continues on next page)

21

nfcpy documentation, Release 0.13.6

(continued from previous page)

socket.accept()
...

def client(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.DATA_LINK_CONNECTION)
socket.setsockopt(nfc.llcp.SO_RCVMIU, 1000)
socket.setsockopt(nfc.llcp.SO_RCVBUF, 2)
socket.connect("urn:nfc:sn:snep")
...

LLCP data link connections use sliding window flow-control. The receive window set with nfc.llcp.SO_RCVBUF
dictates the number of connection-oriented information PDUs that the remote side of the data link connection may
have outstanding (sent but not acknowledged) at any time. A connection-mode socket is able to receive and buffer
that number of packets. Whenever the service user (the application) retrieves one or more messages from the socket,
reception of the messages will be acknowledged to the remote SAP.

A common application architecture is that messages are received in a dedicated thread and then added to a message
queue that the application will query for data to process at a later time. Unless the message queue can grow indefinitely
it may happen that the receive thread is unable to add more data to the queue because the application is not consuming
data for some reason. For such situations LLCP provides a mechanism to convey a busy indication to the remote service
user. In nfcpy an application uses setsockopt() with option nfc.llcp.SO_RCVBSY and value True to set
the busy state or value False to clear the busy state. An application can use getsockopt() with option nfc.
llcp.SO_RCVBSSY to learn it’s own busy state and nfc.llcp.SO_SNDBSY to learn the remote application’s
busy state.

22 Chapter 4. Logical Link Control Protocol

CHAPTER 5

Simple NDEF Exchange Protocol

The NFC Forum Simple NDEF Exchange Protocol (SNEP) allows two NFC devices to exchange NDEF Messages.
It is implemented in many smartphones and typically used to push phonebook contacts or web page URLs to another
phone.

SNEP is a stateless request/response protocol. The client sends a request to the server, the server processes that
request and returns a response. On the protocol level both the request and response have no consequences for further
request/response exchanges. Information units transmitted through SNEP are NDEF messages. The client may use a
SNEP PUT request to send an NDEF message and a SNEP GET request to retrieve an NDEF message. The message
to retrieve with a GET request depends on an NDEF message sent with the GET request but the rules to determine
equivalence are an application layer contract and not specified by SNEP.

NDEF messages can easily be larger than the maximum information unit (MIU) supported by the LLCP data link
connection that a SNEP client establishes with a SNEP server. The SNEP layer handles fragmentation and reassembly
so that an application must not be concerned. To avoid exhaustion of the limited NFC bandwidth if an NDEF mes-
sage would exceed the SNEP receiver’s capabilities, the receiver must acknowledge the first fragment of an NDEF
message that can not be transmitted in a single MIU. The acknowledge can be either the request/response codes CON-
TINUE or REJECT. If CONTINUE is received, the SNEP sender shall transmit all further fragments without further
acknowledgement (the LLCP data link connection guarantees successful transmission). If REJECT isreceived, the
SNEP sender shall abort tranmsission. Fragmentation and reassembly are handled transparently by the nfc.snep.
SnepClient and nfc.snep.SnepServer implementation and only a REJECT would be visible to the user.

A SNEP server may return other response codes depending on the result of a request:

• A SUCCESS response indicates that the request has succeeded. For a GET request the response will include an
NDEF message. For a PUT request the response is empty.

• A NOT FOUND response says that the server has not found anything matching the request. This may be a
temporary of permanent situation, i.e. the same request send later could yield a different response.

• An EXCESS DATA response may be received if the server has found a matching response but sending it would
exhaust the SNEP client’s receive capabilities.

• A BAD REQUEST response indicates that the server detected a syntax error in the client’s request. This should
almost never be seen.

23

nfcpy documentation, Release 0.13.6

• The NOT IMPLEMENTED response will be returned if the client sent a request that the server has not imple-
mented. It applies to existing as well as yet undefined (future) request codes. The client can learn the difference
from the version field transmitted withnthe response, but in reality it doesn’t matter - it’s just not supported.

• With UNSUPPORTED VERSION the server reacts to a SNEP version number sent with the request that it
doesn’t support or refuses to support. This should be seen only if the client sends with a higher major version
number than the server has implemented. It could be received also if the client sends with a lower major version
number but SNEP servers are likely to support historic major versions if that ever happens (the current SNEP
version is 1.0).

Besides the protocol layer the SNEP specification also defines a Default SNEP Server with the well-known LLCP
service access point address 4 and service name urn:nfc:sn:snep. Certified NFC Forum Devices must have the
Default SNEP Server implemented. Due to that requirement the feature set and guarantees of the Default SNEP Server
are quite limited - it only implements the PUT request and the NDEF message to put could be rejected if it is more
than 1024 octets, though smartphones generally seem to support more.

5.1 Default Server

A basic Default SNEP Server can be built with nfcpy like in the following example, where all error and exception
handling has been sacrified for brevity.

import nfc
import nfc.snep

class DefaultSnepServer(nfc.snep.SnepServer):
def __init__(self, llc):

nfc.snep.SnepServer.__init__(self, llc, "urn:nfc:sn:snep")

def put(self, ndef_message):
print "client has put an NDEF message"
print ndef_message.pretty()
return nfc.snep.Success

def startup(llc):
global my_snep_server
my_snep_server = DefaultSnepServer(llc)
return llc

def connected(llc):
my_snep_server.start()
return True

my_snep_server = None
clf = nfc.ContactlessFrontend("usb")
clf.connect(llcp={'on-startup': startup, 'on-connect': connected})

This server will accept PUT requests with NDEF messages up to 1024 octets and return NOT IMPLEMENTED for
any GET request. To increase the size of NDEF messages that can be received, the max_ndef_message_recv_size
parameter can be passed to the nfc.snep.SnepServer class.

class DefaultSnepServer(nfc.snep.SnepServer):
def __init__(self, llc):

nfc.snep.SnepServer.__init__(self, llc, "urn:nfc:sn:snep", 10*1024)

24 Chapter 5. Simple NDEF Exchange Protocol

nfcpy documentation, Release 0.13.6

5.2 Using SNEP Put

Sending an NDEF message to the Default SNEP Server is easily done with an instance of nfc.snep.SnepClient
and is basically to call nfc.snep.SnepClient.put() with the message to send. The example below shows how
the function to send the NDEF message is started as a separate thread - it cannot be directly called in connected()
because the main thread context is used to run the LLCP link.

import nfc
import nfc.snep
import threading

def send_ndef_message(llc):
sp = nfc.ndef.SmartPosterRecord('http://nfcpy.org', title='nfcpy home')
snep = nfc.snep.SnepClient(llc)
snep.put(nfc.ndef.Message(sp))

def connected(llc):
threading.Thread(target=send_ndef_message, args=(llc,)).start()
return True

clf = nfc.ContactlessFrontend("usb")
clf.connect(llcp={'on-connect': connected})

Some phones require that a SNEP be present even if they are not going to send anything (Windows Phone 8 is such
example). The solution is to also run a SNEP server on urn:nfc:sn:snep which may just do nothing.

import nfc
import nfc.snep
import threading

server = None

def send_ndef_message(llc):
sp = nfc.ndef.SmartPosterRecord('http://nfcpy.org', title='nfcpy home')
snep = nfc.snep.SnepClient(llc)
snep.put(nfc.ndef.Message(sp))

def startup(clf, llc):
global server
server = nfc.snep.SnepServer(llc, "urn:nfc:sn:snep")
return llc

def connected(llc):
server.start()
threading.Thread(target=send_ndef_message, args=(llc,)).start()
return True

clf = nfc.ContactlessFrontend("usb")
clf.connect(llcp={'on-startup': startup, 'on-connect': connected})

5.3 Private Servers

The SNEP protocol can be used for other, non-standard, communication between a server and client component. A
private server can be run on a dynamically assigned service access point if a private service name is used. A private
server may also implement the GET request if it defines what a GET shall mean other than to return something. Below

5.2. Using SNEP Put 25

nfcpy documentation, Release 0.13.6

is an example of a private SNEP server that implements bot PUT and GET with the simple contract that whatever is
put to the server will be returned for a GET request that requests the same or empty NDEF type and name values (for
anything else the answer is NOT FOUND).

import nfc
import nfc.snep

class PrivateSnepServer(nfc.snep.SnepServer):
def __init__(self, llc):

self.ndef_message = nfc.ndef.Message(nfc.ndef.Record())
service_name = "urn:nfc:xsn:nfcpy.org:x-snep"
nfc.snep.SnepServer.__init__(self, llc, service_name, 2048)

def put(self, ndef_message):
print "client has put an NDEF message"
self.ndef_message = ndef_message
return nfc.snep.Success

def get(self, acceptable_length, ndef_message):
print "client requests an NDEF message"
if ((ndef_message.type == '' and ndef_message.name == '') or

((ndef_message.type == self.ndef_message.type) and
(ndef_message.name == self.ndef_message.name))):

if len(str(self.ndef_message)) > acceptable_length:
return nfc.snep.ExcessData

return self.ndef_message
return nfc.snep.NotFound

def startup(clf, llc):
global my_snep_server
my_snep_server = PrivateSnepServer(llc)
return llc

def connected(llc):
my_snep_server.start()
return True

my_snep_server = None
clf = nfc.ContactlessFrontend("usb")
clf.connect(llcp={'on-startup': startup, 'on-connect': connected})

A client application knowing the private server above may then use PUT and GET to set an NDEF message on the
server and retrieve it back. The example code below also shows how results other than SUCCESS must be catched in
try-except clauses. Note that max_ndef_msg_recv_size parameter is a policy sent to the SNEP server with every GET
request. It is a arbitrary restriction of the nfc.snep.SnepClient that this parameter can only be set when the
object is created; the SNEP protocol would allow it to be different for every GET request but unless there’s demand
for such flexibility that won’t change.

import nfc
import nfc.snep
import threading

def send_ndef_message(llc):
sp = nfc.ndef.SmartPosterRecord('http://nfcpy.org', title='nfcpy home')
snep = nfc.snep.SnepClient(llc, max_ndef_msg_recv_size=2048)
snep.connect("urn:nfc:xsn:nfcpy.org:x-snep")
snep.put(nfc.ndef.Message(sp))

(continues on next page)

26 Chapter 5. Simple NDEF Exchange Protocol

nfcpy documentation, Release 0.13.6

(continued from previous page)

print "*** get whatever the server has ***"
print snep.get().pretty()

print "*** get a smart poster with no name ***"
r = nfc.ndef.Record(record_type="urn:nfc:wkt:Sp", record_name="")
print snep.get(nfc.ndef.Message(r)).pretty()

print "*** get something that isn't there ***"
r = nfc.ndef.Record(record_type="urn:nfc:wkt:Uri")
try:

snep.get(nfc.ndef.Message(r))
except nfc.snep.SnepError as error:

print repr(error)

def connected(llc):
threading.Thread(target=send_ndef_message, args=(llc,)).start()
return True

clf = nfc.ContactlessFrontend("usb")
clf.connect(llcp={'on-connect': connected})

5.3. Private Servers 27

nfcpy documentation, Release 0.13.6

28 Chapter 5. Simple NDEF Exchange Protocol

CHAPTER 6

Example Programs

tagtool.py Read or write or format tags for NDEF use.

ndeftool.py Generate or inspect or reorganize NDEF data.

beam.py Exchange NDEF data with a smartphone.

sense.py Sense for contactless targets.

listen.py Listen as contactless target.

rfstate.py Observe the RF field presence.

6.1 tagtool.py

The tagtool.py example program can be used to read or write NFC Forum Tags. For some tags, currently Type 3 Tags
only, tagtool can also be used to format for NDEF use.

$ tagtool.py [-h|--help] [options] command

• Options

• Commands

– show

– dump

– load

– format

– protect

– emulate

29

nfcpy documentation, Release 0.13.6

• Examples

6.1.1 Options

--loop, -l
Repeat the command endlessly, use Control-C to abort.

--wait
After reading or writing a tag, wait until it is removed before returning. This option is implicit when the option
--loop is set.

--technology {A,B,F}
Poll only for tags of a specific technology. The technologies NFC-A, NFC-B, and NFC-F are defined in the
NFC Forum Digital Specification. The technology indicator is case insensitive. The default is to poll for all
technologies.

-q
Do not print log messages except for errors and warnings.

-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with -f. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, -d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless -q is set to supress info messages on <stderr>.

--nolog-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.llcp.
llc module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

--device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

• usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb:054c the first Sony reader.

• usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb:001 would mean to use the first available reader on bus number 1.

• tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty:USB0:arygon for the Arygon APPx/ADRx at /dev/ttyUSB0.

• com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

• udp[:host][:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

30 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

-p PASSWORD
Use PASSWORD to authentication with a tag that supports password protection. This would be the same
password as used in tagtool.py protect -p to set a password.

6.1.2 Commands

Available commands are listed below. The default if no command is specified is to invoke tagtool.py show.

show

The show command prints information about a tag, including NDEF data if present.:

$ tagtool.py [options] show [-h] [-v]

-v
Print verbose information about the tag found. The amount of additional information depends on the tag type.

dump

The dump command dumps tag data to the console or into a file. Data written to the console is a hexadecimal string.
Data written to a file is raw bytes.

$ tagtool.py [options] dump [-h] [-o FILE]

-o FILE
Write data to FILE. Data format is plain bytes.

load

The load command writes data to a tag. Data may be plain bytes or a hex string, as generated by the dump command
or with the ndeftool.

$ tagtool.py [options] load [-h] FILE

FILE
Load NDEF data to write from FILE which must exist and be readable. The file may contain NDEF data in
either raw bytes or a hexadecimal string which gets converted to bytes. If FILE is specified as a single dash -
data is read from stdin.

format

The format command writes NDEF capability information for an empty NDEF memory area on NFC Forum compli-
ant tags. A tag type may be specified to give further options.

$ tagtool.py [options] format [-h] [options] {tt1,tt2,tt3,tt4} ...

--version x.y
The format of the management information that describes the NDEF data area on the tag, as defined in the
NFC Forum tag specifications. Only defined version numbers are acceptable. The version must be expressed
as a version string of the form <major>.<minor>, where each component is an integer between 0 and 15,
inclusively. For example, --version 1.3 denotes major version 1 and minor version 3. If --version is
not provided, the highest possible version number is used.

6.1. tagtool.py 31

nfcpy documentation, Release 0.13.6

--wipe BYTE
When formatting a tag the NDEF message data itself is usually not touched and could be easily recovered. The
--wipe options instructs the formatter to overwrite the complete data area with the given 8-bit integer value.
Depending on the tag type and size this may take a couple of seconds.

format tt1

The format tt1 command formats the NDEF partition on a Type 1 Tag.

$ tagtool.py [options] format tt1 [-h]

--magic BYTE
The value to use as the NDEF magic byte. This option can be used to set an invalid magic byte.

--ver x.y
Type 1 Tag NDEF mapping version number, specified as a version string in the same way as for to the
--version argument. The difference is that this version number will be written regardless of whether it
constitutes a valid version number.

--tms BYTE
Value to write into the tag memory size byte.

--rwa BYTE
Value to write into the read/write access byte.

format tt2

The format tt2 command formats the NDEF partition on a Type 2 Tag.

$ tagtool.py [options] format tt2 [-h]

format tt3

The format tt3 command formats the NDEF partition on a Type 3 Tag. With no additional options it does format for
the maximum capacity. With further options it is possible to create any kind of weird tag formats for testing reader
implementations. Note that none of these options is verified, except for the possible value range to fit the destination
field. None of the options is necessary to create a correct format.

$ tagtool.py [options] format tt3 [-h] [--ver STR] [--nbr INT] [--nbw INT]
[--max INT] [--rfu INT] [--wf INT]
[--rw INT] [--len INT] [--crc INT]

--ver x.y
Type 3 Tag NDEF mapping version number, specified as a version string in the same way as for to the
--version argument. The difference is that this version number will be written regardless of whether it
constitutes a valid version number.

--nbr N
Type 3 Tag attribute block Nbr field value, the number of blocks that can be read at once. Must be an 8-bit
integer in decimal or hexadecimal notation.

--nbw N
Type 3 Tag attribute block Nbw field value, the number of blocks that can be written at once. Must be an 8-bit
integer in decimal or hexadecimal notation.

32 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

--max N
Type 3 Tag attribute block Nmaxb field value, which is the maximum number of blocks available for NDEF
data. Must be a 16-bit integer in decimal or hexadecimal notation.

--rfu N
Type 3 Tag attribute block reserved field value. Must be an 8-bit integer in decimal or hexadecimal notation.

--wf N
Type 3 Tag attribute block WriteF field value. Must be an 8-bit integer in decimal or hexadecimal notation.

--rw N
Type 3 Tag attribute block RW Flag field value. Must be an 8-bit integer in decimal or hexadecimal notation.

--len N
Type 3 Tag attribute block Ln field value that specifies the actual size of the NDEF data stored. Must be a 24-bit
integer in decimal or hexadecimal notation.

--crc N
Type 3 Tag attribute block Checksum field value. Must be a 16-bit integer in decimal or hexadecimal notation.
If not specified, the checksum is computed to be correct.

format tt4

The format tt4 command formats the NDEF partition on a Type 4 Tag.

$ tagtool.py [options] format tt4 [-h]

protect

The protect command attempts to protect the tag against write modifications, optionally also against unauthorized
read access. Support for protection depends on the tag type and product. Without options the the default attempt
is protect with lock bits, be warned that this can not be undone. Lock bits are only available for type 1 and type 2
tags. With option -p the protection will be based on a password and further modifications are possible for anyone in
posession of the password. Password protection works on NXP NTAG 21x type 2 tags and Sony FeliCa Lite-S type 3
tags.

$ tagtool.py protect [-h] [-p PASSWORD] [--from BLOCK] [--unreadable]

-p PASSWORD
Protect the tag with the given PASSWORD. This works only for the NXP NTAG 21x type 2 tags and Sony
FeliCa Lite-S type 3 tags. The password string is used as a key to compute an HMAC-SHA256 with the tag
identifier (UID or IDm) as the message. The final password is the leftmost number of octets as needed for the
tag product, 6 octets for an NTAG 21x and 16 octets for a FeliCa Lite-S. A password protected tag can then be
unlocked with tagtool.py -p.

$ tagtool.py protect -p "my secret password"
$ tagtool.py -p "my secret password" protect -p "new secret"

--from BLOCK
Start protecting data from a given block number. This option does only make sense on tags that organize memory
in blocks or pages (Type 1, 2 and 3 Tags). A block corresponds to 4 byte of memory (a page) on Type 1 and 2
Tags, and 16 byte of memory on Type 3 Tags. If the tag has fewer blocks than specified, the value is silently
adjusted to the largest possible.

--unreadable
This option can only be used with password based protection. The result is that the tag will become unreadable

6.1. tagtool.py 33

nfcpy documentation, Release 0.13.6

without a password, i.e. the content is completely hidden. Further reads must then use the password option
before the command.

$ tagtool.py -p "secret password" show

emulate

The emulate command emulates an NDEF tag if the hardware and driver support that functionality. The tag type must
be specified following the optional parameters. The only currently supported tag type it tt3.

$ tagtool.py emulate [-h] [-l] [-k] [-s SIZE] [-p FILE] [FILE] {tt3} ...

FILE
Initialize the tag with NDEF data read from FILE. If not specified the tag will be just empty.

-l, --loop
Automatically restart after the tag has been released by the Initiator.

-k, --keep
If the --loop option is set, keep the same memory content after tag relase for the next tag activation. Without
the -k option the tag memory is initialized from the command options for every activation.

-s SIZE
The minimum size for NDEF data. Depending on the tag type this may be rounded up to the nearest multiple of
the tag storage granularity. If NDEF data is provided the size may be adjusted to fit the length of the data.

-p FILE
Preserve memory content in FILE after the tag is relased by the Initiator. The file is created if it does not exist
and otherwise overwritten.

emulate tt3

The emulate tt3 command emulates an NFC Forum Type 3 Tag.

$ tagtool.py [options] emulate [options] tt3 [-h] [--idm HEX] [--pmm HEX]
[--sys HEX] [--bitrate {212,424}]

--idm HEX
The Manufacture Identifier to use in the polling response. Specified as a hexadecimal string. Defaults to
03FEFFE011223344.

--pmm HEX
The Manufacture Parameter to use in the polling response. Specified as a hexadecimal string. Defaults to
01E0000000FFFF00.

--sys HEX, --sc HEX
The system code use in the polling response if requested. Specified as a hexadecimal string. Defaults to 12FC.

--bitrate {212,424}
The bitrate to listen for and respond with. Must be either 212 or 424. Defaults to 212 kbps.

6.1.3 Examples

Copy NDEF from one tag to another:

34 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

$ tagtool.py dump -o /tmp/tag.ndef && tagtool load /tmp/tag.ndef

Copy NDEF from one tag to many others:

$ tagtool.py dump -o /tmp/tag.ndef && tagtool --loop load /tmp/tag.ndef

6.2 ndeftool.py

Warning: The ndeftool example has become a separate project with its own documentation. The example code
documented here will be removed in a future nfcpy release.

The ndeftool intends to be a swiss army knife for working with NDEF data.

$ ndeftool.py [-h] [-v] [-d] {print,make,pack,split,cat} ...

• Options

• Commands

– print

– make

* make smartposter

* make wificfg

* make wifipwd

* make btcfg

– pack

– split

– cat

• Examples

6.2.1 Options

-v
Print informational messages.

-d
Print debug information.

6.2.2 Commands

6.2. ndeftool.py 35

https://github.com/nfcpy/ndeftool
https://ndeftool.readthedocs.io

nfcpy documentation, Release 0.13.6

print

The print command decodes and prints the content of an NDEF message. The message data may be in raw binary or
hexadecimal string format and is read from message-file or standard input if message-file is not provided.:

$ ndeftool.py print [-h|--help] [message]

make

The make command allows generating specific NDEF messages. The type of message is determined by a further
sub-command:

• make smartposter - creates a smartposter record

• make wificfg - creates a WiFi Configuration record

• make wifipwd - creates a WiFi Password record

• make btcfg - creates a Bluetooth out-of-band record

make smartposter

The make smartposter command creates a smartposter message for the uniform resource identifier reference:

$ ndeftool.py make smartposter [-h|--help] [options] reference

Options:

-t titlespec
Add a smart poster title. The titlespec consists of an ISO/IANA language code, a “:” as separator, and the title
string. The language code is optional and defaults to “en”. The separator may then also be omitted unless the
title string itself contains a colon. Multiple -t options may be present for different languages.

-i iconfile
Add a smart poster icon. The iconfile must be an existing and readable image file for which a mime type is
registered. Multiple -i options may be present for different image types.

-a actionstring
Set the smart poster action. Valid action strings are “default” (default action of the receiving device), “exec”
(send SMS, launch browser, call phone number), “save” (store SMS in INBOX, bookmark hyperlink, save phone
number in contacts), and “edit”.

-o output-file
Write message data to output-file (default is write to standard output). The -o option also switches the output
format to raw bytes versus the hexadecimal string written to stdout.

make wificfg

The make wificfg command creates a configuration token for the WiFi network with SSID network-name. Without
further options this command creates configuration data for an open network:

$ ndeftool.py make wificfg [-h|--help] [options] network-name

Options:

36 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

--key network-key
Set the network-key for a secured WiFi network. The security method is set to WPA2-Personal.

--mixed-mode
With this option set the security method is set to also include the older WPA-Personal standard.

--mac mac-address
The MAC address of the device for which the credential was generated. Without the --mac option the broadcast
MAC “ff:ff:ff:ff:ff:ff” is used to indicate that the credential is not device specific.

--shareable
Set this option if the network configuration may be shared with other devices.

-o output-file
Write message data to output-file (default is write to standard output). The -o option also switches the output
format to raw bytes versus the hexadecimal string written to stdout.

--hs
Encapsulate the Wifi Configuration record into a Handover Select Message. The carrier power state will set to
‘unknown’.

--active
Generate a Handover Select message with the WiFi carrier power state set to ‘active’. This option is mutually
exclusive with the --inactive and --activating options.

--inactive
Generate a Handover Select message with the WiFi carrier power state set to ‘inactive’. This option is mutually
exclusive with the --active and --activating options.

--activating
Generate a Handover Select message with the WiFi carrier power state set to ‘activating’. This option is mutually
exclusive with the --active and --inactive options.

make wifipwd

The make wifipwd command creates a password token for the WiFi Protected Setup registration protocol, signed with
the first 160 bits of SHA-256 hash of the enrollee’s public key in public-key-file.:

$ ndeftool.py make wificfg [-h|--help] [options] public-key-file

Options:

-p device-password
A 16 - 32 octet long device password. If the -p option is not given a 32 octet long random device password is
generated.

-i password-id
An arbitrary value between 0x0010 and 0xFFFF that serves as an identifier for the device password. If the -i
option is not given a random password identifier is generated.

-o output-file
Write message data to output-file (default is write to standard output). The -o option also switches the output
format to raw bytes versus the hexadecimal string written to stdout.

make btcfg

The make btcfg command creates an out-of-band configuration record for a Bluetooth device.:

6.2. ndeftool.py 37

nfcpy documentation, Release 0.13.6

$ ndeftool.py make btcfg [-h|--help] [options] device-address

Options:

-c class-of-device
The 24 class of device/service bits as a string of ‘0’ and ‘1’ characters, with the most significant bit left.

-n name-of-device
The user friendly name of the device.

-s service-class
A service class implemented by the device. A service class may be specified by description or as a 128-bit
UUID string (for example, “00001108-0000-1000-8000-00805f9b34fb” would indicate “Printing”). Textual
descriptions are evaluated case insensitive and must then match one of the following:

‘Handsfree Audio Gateway’, ‘PnP Information’, ‘Message Access Server’, ‘ESDP UPNP IP PAN’, ‘HDP
Source’, ‘Generic Networking’, ‘Message Notification Server’, ‘Browse Group Descriptor’, ‘NAP’, ‘A/V Re-
mote Control Target’, ‘Basic Imaging Profile’, ‘Generic File Transfer’, ‘Message Access Profile’, ‘Generic
Telephony’, ‘Basic Printing’, ‘Intercom’, ‘HCR Print’, ‘Dialup Networking’, ‘Advanced Audio Distribution’,
‘Printing Status’, ‘OBEX File Transfer’, ‘Handsfree’, ‘Hardcopy Cable Replacement’, ‘Imaging Responder’,
‘Phonebook Access - PSE’, ‘ESDP UPNP IP LAP’, ‘IrMC Sync’, ‘Cordless Telephony’, ‘LAN Access Us-
ing PPP’, ‘OBEX Object Push’, ‘Video Source’, ‘Audio Source’, ‘Human Interface Device’, ‘Video Sink’,
‘Reflected UI’, ‘ESDP UPNP L2CAP’, ‘Service Discovery Server’, ‘HDP Sink’, ‘Direct Printing Reference’,
‘Serial Port’, ‘SIM Access’, ‘Imaging Referenced Objects’, ‘UPNP Service’, ‘A/V Remote Control Controller’,
‘HCR Scan’, ‘Headset - HS’, ‘UPNP IP Service’, ‘IrMC Sync Command’, ‘GNSS’, ‘Headset’, ‘WAP Client’,
‘Imaging Automatic Archive’, ‘Phonebook Access’, ‘Fax’, ‘Generic Audio’, ‘Audio Sink’, ‘GNSS Server’, ‘A/V
Remote Control’, ‘Video Distribution’, ‘WAP’, ‘Common ISDN Access’, ‘Direct Printing’, ‘GN’, ‘PANU’,
‘Phonebook Access - PCE’, ‘Headset - Audio Gateway (AG)’, ‘Reference Printing’, ‘HDP’

-o output-file
Write message data to output-file (default is write to standard output). The -o option also switches the output
format to raw bytes versus the hexadecimal string written to stdout.

--hs
Encapsulate the Bluetooth Configuration record into a Handover Select Message. The carrier power state will
set to ‘unknown’ unless one of the options --active, --inactive or --activating is given.

--active
Generate a Handover Select message with the Bluetooth carrier power state set to ‘active’. This option is
mutually exclusive with the --inactive and --activating options.

--inactive
Generate a Handover Select message with the Bluetooth carrier power state set to ‘inactive’. This option is
mutually exclusive with the --active and --activating options.

--activating
Generate a Handover Select message with the Bluetooth carrier power state set to ‘activating’. This option is
mutually exclusive with the --active and --inactive options.

pack

The pack command converts a file into an NDEF record with both message begin and end flag set to 1. If the -t
option is not given the record type is guessed from the file content using the mimetypes module. The record name is
by default set to the name of the file being converted, unless data is read from stdin in which case the record name is
not encoded.

38 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

If a file mime type is text/plain it will be encoded as an NDEF Text Record (type urn:nfc:wkt:T) if -t is not
set. The text record language is guessed from the file content if the Python module guess_language is installed,
otherwise set to English.

$ ndeftool.py pack [-h|--help] [options] FILE

Options:

-t record-type
Set the record type to record-type (the default is to guess it from the file mime type).

-n record-name
Set the record identifier to record-name (the default is to use the file path name).

-o output-file
Write message data to output-file (default is write to standard output). The -o option also switches the output
format to raw bytes versus the hexadecimal string written to stdout.

split

The split command separates an an NDEF message into individual records. If data is read from a file, records are
written as binary data into individual files with file names constructed from the input file base name, a hyphen followed
by a three digit number and the input file name extension. If data is read from stdin, records are written to stdout as
individual lines of hexadecimal strings.

$ ndeftool.py split [-h|--help] [options] message-file

Options:

--keep-message-flags
Do not reset the record’s message begin and end flags but leave tem as found in the input message data.

cat

The cat command concatenates records into a single message.

$ ndeftool.py cat [-h|--help] record-file [record-file ...]

Options:

-o output-file
Write message data to output-file (default is write to standard output). The -o option also switches the output
format to raw bytes versus the hexadecimal string written to stdout.

6.2.3 Examples

To build a smartposter that points to the nfcpy documentation page:

$ ndeftool.py make smartposter http://nfcpy.org/docs
d102135370d1010f55036e666370792e6f72672f646f6373

The output can be made readable with the ndeftool print command:

6.2. ndeftool.py 39

nfcpy documentation, Release 0.13.6

$ ndeftool.py make smartposter http://nfcpy.org/docs | ndeftool.py print
Smartposter Record

resource = http://nfcpy.org/docs
action = default

To get the smartposter as raw bytes specify an output file:

$ ndeftool.py make smartposter http://nfcpy.org/docs -o sp_nfcpy_docs.ndef

Here’s a more complex example setting multi-language smartposter title, icons and a non-default action:

$ ndeftool.py make smartposter http://nfcpy.org/docs -t "nfcpy documentation" -t
→˓"de:nfcpy Dokumentation" -i logo.gif -i logo.png -a save -o sp_nfcpy_docs.ndef

It is sometimes helpful to have an NDEF message of specific length where the payload consists of monotonically
increasing byte values:

$ python -c "import sys; sys.stdout.write(bytearray([x % 256 for x in xrange(1024-
→˓6)]))" | ndeftool.py pack - -o message-1k.ndef

6.3 beam.py

The beam.py example program uses the Simple NDEF Exchange Protocol (SNEP) to send or receive NDEF messages
to or from a peer device, in most cases this will be a smartphone. The name beam is inspired by Android Beam and
thus beam.py will be able to receive most content sent through Android Beam. It will not work for data that Android
Beam sends with connection handover to Bluetooth or Wi-Fi, this may become a feature in a later version. Despite it’s
name, beam.py works not only with Android phones but any NFC enabled phone that implements the NFC Forum
Default SNEP Server, such as Blackberry and Windows Phone 8.

$ beam.py [-h|--help] [OPTIONS] {send|recv} [-h] [OPTIONS]

• Options

• Commands

– send

* send link

* send text

* send file

* send ndef

– recv

* recv print

* recv save

* recv echo

* recv send

• Examples

40 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

6.3.1 Options

--loop, -l
Repeat the command endlessly, use Control-C to abort.

--mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

--miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

--lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

--listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

--no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with -f. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, -d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless -q is set to supress info messages on <stderr>.

--nolog-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.llcp.
llc module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

--device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

• usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb:054c the first Sony reader.

• usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb:001 would mean to use the first available reader on bus number 1.

• tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty:USB0:arygon for the Arygon APPx/ADRx at /dev/ttyUSB0.

• com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

• udp[:host][:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port

6.3. beam.py 41

nfcpy documentation, Release 0.13.6

defaults to 54321.

6.3.2 Commands

send

Send an NDEF message to the peer device. The message depends on the positional argument that follows the send
command and additional data.

$ beam.py send [--timeit] {link,text,file,ndef} [-h] [OPTIONS]

--timeit
Measure and print the time that was needed to send the message.

send link

Send a hyperlink embedded into a smartposter record.

$ beam.py send link URI [TITLE]

URI
The resource identifier, for example http://nfcpy.org.

TITLE
The smartposter title, for example "nfcpy project home".

send text

Send plain text embedded into an NDEF Text Record. The default language identifier en can be changed with the
--lang flag.

$ beam.py send text TEXT [OPTIONS]

TEXT
The text string to send.

--lang STRING
The language code to use when constructing the NDEF Text Record.

send file

Send a data file. This will construct a single NDEF record with type and name set to the file’s mime type and path
name, and the payload containing the file content. Both record type and name can also be explicitly set with the options
-t and -n, respectively.

$ beam.py send file FILE [OPTIONS]

FILE
The file to send.

-t STRING
Set the record type. See NFC Data Exchange Format for how to specify record types in nfcpy.

42 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

-n STRING
Set the record name (identifier).

send ndef

Send an NDEF message read from file. The file may contain multiple messages and if it does, then the strategy to
select a specific message for sending can be specified with the --select STRATEGY option. For strategies that
select a different message per touch beam.py must be called with the --loop flag. The strategies first, last and
random select the first, or last, or a random message from FILE. The strategies next and cycle start with the first
message and then count up, the difference is that next stops at the last message while cycle continues with the first.

$ beam.py send ndef FILE [OPTIONS]

FILE
The file from which to read NDEF messages.

--select STRATEGY
The strategy for NDEF message selection, it may be one of first, last, next, cycle, random.

recv

Receive an NDEF message from the peer device. The next positional argument determines what is done with the
received message.

$ beam.py [OPTIONS] recv {print,save,echo,send} [-h] [OPTIONS]

recv print

Print the received message to the standard output stream.

$ beam.py recv print

recv save

Save the received message into a file. If the file already exists the message is appended.

$ beam.py recv save FILE

FILE
Name of the file to save messages received from the remote peer. If the file exists any new messages are
appended.

recv echo

Receive a message and send it back to the peer device.

$ beam.py recv echo

6.3. beam.py 43

nfcpy documentation, Release 0.13.6

recv send

Receive a message and send back a corresponding message if such is found in the translations file. The translations
file must contain an even number of NDEF messages which are sequentially read into inbound/outbound pairs to
form a translation table. If the receved message corresponds to any of the translation table inbound messages the
corresponding outbound message is then sent back.

$ beam.py [OPTIONS] recv send [-h] TRANSLATIONS

TRANSLATIONS
A file with a sequence of NDEF messages.

6.3.3 Examples

Get a smartphone to open the nfcpy project page (which in fact just points to the code repository and documentation).

$ beam.py send link http://nfcpy.org "nfcpy project home"

Send the source file beam.py. On an Android phone this should pop up the “new tag collected” screen and show that
a text/x-python media type has been received.

$ beam.py send file beam.py

The file beam.py is about 11 KB and may take some time to transfer, depending on the phone hardware and software.
With a Google Nexus 10 it takes as little as 500 milliseconds while a Nexus 4 won’t do it under 2.5 seconds.

$ beam.py send --timeit file beam.py

Receive a single NDEF message from the peer device and save it to message.ndef (note that if message.ndef exists the
received data will be appended):

$ beam.py recv save message.ndef

With the --loop option it gets easy to collect messages into a single file.

$ beam.py --loop recv save collected.ndef

A file that contains a sequence of request/response message pairs can be used to send a specific response message
whenever the associated request message was received.

$ echo -n "this is a request message" > request.txt
$ ndeftool.py pack -n '' request.txt -o request.ndef
$ echo -n "this is my reponse message" > response.txt
$ ndeftool.py pack -n '' response.txt -o response.ndef
$ cat request.ndef response.ndef > translation.ndef
$ beam.py recv send translation.ndef

6.4 sense.py

The sense example demonstrates the use of the nfc.clf.ContactlessFrontend.sense() method to dis-
cover contactless targets.

44 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

$ sense.py [target [target ...]] [options]

The target arguments define the type, bitrate and optional attributes for the contactless targets that may be discov-
ered in a single sense loop. An empty loop (no targets) is allowed but is only useful to verify the nfc.clf.
ContactlessFrontend.sense() method behavior. Optional arguments allow to set an iteration count and
interval, continously repeat the (iterated) loop after a wait time, activate standard or verbose debug logs, and to specify
the local device to use.

A target is specified by bitrate and a type identifier A, B, F. The following example would first sense for a DEP Target
at 106kbps (in active communication mode), then for a Type A Target at 106 kbps, a Type B Target at 106kbps and a
Type F Target at 212kbps.

$ sense.py 106A 106B 212F

Additional parameters can be supplied as comma-delimited name=value pairs in brackets. The example below searches
for a 106 kbps DEP Target (in active communication mode) and then changes communication speed to 424 kbps.

$ sense.py '106A(atr_req=d400FFFFFFFFFFFFFFFF62260000003246666d010110)'

$ sense.py 106A --atr d400FFFFFFFFFFFFFFFF62260000003246666d010110

6.4.1 Options

-h, --help
Show a help message and exit.

--dep params
Attempt a DEP Target activation in passive communication mode when an appropriate Type A or Type F Target
was discovered in in the main sense loop. The params argument defines optional attributes for the nfc.clf.
DEP target object. The example below would try a DEP Target activation (in passive communication mode)
with a parameter change to 424 kbps after 106 kbps Type A Target discovery.

$ sense.py 106A --dep 'psl_req=D404001203'

-i number
Specifies the number of iterations to run (default is 1 iteration). Each iteration is a sense for all the targets given
as positional arguments.

-t seconds
The time between two iterations (default is 0.2 sec). It is measured from the start of one iteration to the start of
the next iteration, effectively it will thus never be shorter than the execution time of an iteration.

-r, --repeat
Forever repeat the sense loop (including the number of iterations). Execution can be terminated with Ctrl-C.

-w seconds
Wait the specified number of seconds between repetitions (the default wait time is 0.1 sec).

-d, --debug
Activate debug log messages on standard error output.

-v, --verbose
Activate more debug log messages, most notably all commands send to the local device will be logged as well
as their responses.

6.4. sense.py 45

nfcpy documentation, Release 0.13.6

--device path
Specify a local device search path (the default is usb). For device path construction rules see nfc.clf.
ContactlessFrontend.open().

6.5 listen.py

Source:

#!/usr/bin/env python
-*- coding: latin-1 -*-

Copyright 2015 Stephen Tiedemann <stephen.tiedemann@gmail.com>
#
Licensed under the EUPL, Version 1.1 or - as soon they
will be approved by the European Commission - subsequent
versions of the EUPL (the "Licence");
You may not use this work except in compliance with the
Licence.
You may obtain a copy of the Licence at:
#
https://joinup.ec.europa.eu/software/page/eupl
#
Unless required by applicable law or agreed to in
writing, software distributed under the Licence is
distributed on an "AS IS" basis,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.
See the Licence for the specific language governing
permissions and limitations under the Licence.

"""Listen as Target for activation requests from a remote Initiator.

Usage: ::

listen.py tt2 [options] [--uid UID]
listen.py tt3 [options] [--idm <idm>] [--pmm <pmm>] [--sys <sys>]
listen.py tt4 [options] [--uid <uid>]
listen.py dep [options] [--id3 <id3>] [--gbt <gbt>] [--hce]
listen.py -h | --help

As the Target selected with the first positional argument listen.py
waits '--time T' seconds for activation by a remote device and prints
the local target configuration if not timed out. The listen period is
repeated after '--wait T' seconds if the '--repeat' flag is given.

Without the '--repeat' flag, the exit status is 0 when activated and 1
if timed out, with the '--repeat' flag it is 0 for termination by
keyboard interrupt (Ctrl-C). For argument errors and unsupported
targets listen.py exits with 2. If a local device is not found or was
removed listen.py exits with 3.

Options:

-h, --help show this help message and exit
-t, --time T listen time in seconds [default: 2.5]
-w, --wait T time between repetations [default: 1.0]

(continues on next page)

46 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

(continued from previous page)

-r, --repeat repeat forever (cancel with Ctrl-C)
-d, --debug output debug log messages to stderr
-v, --verbose print and log more information
--device PATH local device search path [default: usb]
--bitrate BR set bitrate (default is 106 for A/B and 212 for F)
--uid UID tt2/tt4 identifier [default: 08010203]
--idm IDM tt3 identifier [default: 02FE010203040506]
--pmm PMM tt3 parameters [default: FFFFFFFFFFFFFFFF]
--sys SYS tt3 system code [default: 12FC]
--id3 ID3 dep nfcid3 [default: 01FE0102030405060708]
--gbt GBT dep general bytes [default: 46666D010111]
--hce announce dep and tt4 support for Type A

Examples: ::

listen.py tt2 --uid 08ABCDEF # listen as Type 2 Tag with this UID
listen.py tt3 --bitrate 424 # listen as Type 3 Tag at 424 kbps
listen.py tt3 --sys 0003 # use the Suica system code for FeliCa
listen.py dep --gbt '' # send ATR response without general bytes
listen.py dep --hce # offer NFC-DEP Protocol and Type 4A Tag

"""
from __future__ import print_function

import os
import re
import sys
import time
import errno
import argparse
import logging
from binascii import hexlify

import nfc
import nfc.clf

def main(args):
if args['--debug']:

loglevel = logging.DEBUG - (1 if args['--verbose'] else 0)
logging.getLogger("nfc.clf").setLevel(loglevel)
logging.getLogger().setLevel(loglevel)

try:
try: waittime = float(args['--wait'])
except ValueError: assert 0, "the '--wait T' argument must be a number"
assert waittime >= 0, "the '--wait T' argument must be positive"
try: timeout = float(args['--time'])
except ValueError: assert 0, "the '--time T' argument must be a number"
assert timeout >= 0, "the '--time T' argument must be positive"

except AssertionError as error:
print(str(error), file=sys.stderr); return 2

try:
clf = nfc.ContactlessFrontend(args['--device'])

except IOError as error:
print("no device found on path %r" % args['--device'], file=sys.stderr)
return 3

(continues on next page)

6.5. listen.py 47

nfcpy documentation, Release 0.13.6

(continued from previous page)

try:
while True:

try:
target = None
if args['tt2']: target = listen_tta(timeout, clf, args)
if args['tt3']: target = listen_ttf(timeout, clf, args)
if args['tt4']: target = listen_tta(timeout, clf, args)
if args['dep']: target = listen_dep(timeout, clf, args)
if target:

print("{0} {1}".format(time.strftime("%X"), target))
except nfc.clf.CommunicationError as error:

if args['--verbose']: logging.error("%r", error)
except AssertionError as error:

print(str(error), file=sys.stderr); return 2

if args['--repeat']: time.sleep(waittime)
else: return (0 if target else 1)

except nfc.clf.UnsupportedTargetError as error:
logging.error("%r", error)
return 2

except IOError as error:
if error.errno != errno.EIO: logging.error("%r", error)
else: logging.error("lost connection to local device")
return 3

except KeyboardInterrupt:
pass

finally:
clf.close()

def listen_tta(timeout, clf, args):
try: bitrate = (int(args['--bitrate']) if args['--bitrate'] else 106)
except ValueError: assert 0, "the '--bitrate' argument must be an integer"
assert bitrate >= 0, "the '--bitrate' argument must be a positive integer"

try: uid = bytearray.fromhex(args['--uid'])
except ValueError: assert 0, "the '--uid' argument must be hexadecimal"
assert len(uid) in (4,7,10), "the '--uid' must be 4, 7, or 10 bytes"

target = nfc.clf.LocalTarget(str(bitrate) + 'A')
target.sens_res = bytearray("\x01\x01")
target.sdd_res = uid
target.sel_res = bytearray("\x00" if args['tt2'] else "\x20")

target = clf.listen(target, timeout)

if target and target.tt2_cmd:
logging.debug("rcvd TT2_CMD %s", hexlify(target.tt2_cmd))

Verify that we can send a response.
if target.tt2_cmd == "\x30\x00":

data = bytearray.fromhex("046FD536 11127A00 79C80000 E110060F")
elif target.tt2_cmd[0] == 0x30:

(continues on next page)

48 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

(continued from previous page)

data = bytearray(16)
else:

logging.warning("communication not verified")
return target

try:
clf.exchange(data, timeout=1)
return target

except nfc.clf.CommunicationError:
logging.error("communication failure after activation")

if target and target.tt4_cmd:
logging.debug("rcvd TT4_CMD %s", hexlify(target.tt4_cmd))
logging.warning("communication not verified")
return target

def listen_ttf(timeout, clf, args):
try: bitrate = (int(args['--bitrate']) if args['--bitrate'] else 212)
except ValueError: assert 0, "the '--bitrate' argument must be an integer"
assert bitrate >= 0, "the '--bitrate' argument must be a positive integer"

try: idm = bytearray.fromhex(args['--idm'][0:16])
except ValueError: assert 0, "the '--idm' argument must be hexadecimal"
idm += os.urandom(8-len(idm))

try: pmm = bytearray.fromhex(args['--pmm'][0:16])
except ValueError: assert 0, "the '--pmm' argument must be hexadecimal"
pmm += (8-len(pmm)) * "\xFF"

try: sys = bytearray.fromhex(args['--sys'][0:4])
except ValueError: assert 0, "the '--sys' argument must be hexadecimal"
sys += (2-len(sys)) * "\xFF"

target = nfc.clf.LocalTarget(str(bitrate) + 'F')
target.sensf_res = "\x01" + idm + pmm + sys

target = clf.listen(target, timeout)

if target and target.tt3_cmd:
if target.tt3_cmd[0] == 0x06:

response = chr(29) + "\7" + idm + "\0\0\1" + bytearray(16)
clf.exchange(response, timeout=0)

elif target.tt3_cmd[0] == 0x0C:
response = chr(13) + "\x0D" + idm + "\x01" + sys

else:
logging.warning("communication not verified")
return target

try:
clf.exchange(response, timeout=1)
return target

except nfc.clf.CommunicationError:
logging.error("communication failure after activation")

def listen_dep(timeout, clf, args):
try: id3 = bytearray.fromhex(args['--id3'][0:20])
except ValueError: assert 0, "the '--id3' argument must be hexadecimal"

(continues on next page)

6.5. listen.py 49

nfcpy documentation, Release 0.13.6

(continued from previous page)

id3 += os.urandom(10-len(id3))

try: gbt = bytearray.fromhex(args['--gbt'])
except ValueError: assert 0, "the '--gbt' argument must be hexadecimal"

target = nfc.clf.LocalTarget()
target.sensf_res = bytearray.fromhex("01") + id3[0:8] + bytearray(10)
target.sens_res = bytearray.fromhex("0101")
target.sdd_res = bytearray.fromhex("08") + id3[-3:]
target.sel_res = bytearray.fromhex("60" if args['--hce'] else "40")
target.atr_res = "\xD5\x01"+id3+"\0\0\0\x08"+("\x32" if gbt else "\0")+gbt

target = clf.listen(target, timeout)
if target and target.dep_req:

logging.debug("rcvd DEP_REQ %s", hexlify(target.dep_req))

Verify that we can indeed send a response. Note that we do
not handle a DID, but nobody is sending them anyway. Further
note that target.dep_req is without the frame length byte
but exchange() works on frames and so it has to be added.
if target.dep_req.startswith("\xD4\x06\x80"):

older phones start with attention
dep_res = bytearray.fromhex("04 D5 07 80")

elif target.dep_req.startswith("\xD4\x06\x00"):
newer phones send information packet
dep_res = bytearray.fromhex("06 D5 07 00 00 00")

else:
logging.warning("communication not verified")
return target

logging.debug("send DEP_RES %s", hexlify(buffer(dep_res, 1)))
try:

data = clf.exchange(dep_res, timeout=1)
assert data and data[0]==len(data)

except (nfc.clf.CommunicationError, AssertionError):
logging.error("communication failure after activation")
return None

logging.debug("rcvd DEP_REQ %s", hexlify(buffer(data, 1)))
mode = "passive" if target.sens_res or target.sensf_res else "active"
logging.debug("activated in %s communication mode", mode)
return target

if __name__ == '__main__':
logging.basicConfig(format='%(relativeCreated)d ms [%(name)s] %(message)s')

try:
from docopt import docopt

except ImportError:
sys.exit("the 'docopt' module is needed to execute this program")

remove restructured text formatting before input to docopt
usage = re.sub(r'(?<=\n)**(\w+:)**.*\n', r'\1', __doc__)
sys.exit(main(docopt(usage)))

50 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

6.6 rfstate.py

Source:

#!/usr/bin/env python
-*- coding: latin-1 -*-

Copyright 2015 Stephen Tiedemann <stephen.tiedemann@gmail.com>
#
Licensed under the EUPL, Version 1.1 or - as soon they
will be approved by the European Commission - subsequent
versions of the EUPL (the "Licence");
You may not use this work except in compliance with the
Licence.
You may obtain a copy of the Licence at:
#
https://joinup.ec.europa.eu/software/page/eupl
#
Unless required by applicable law or agreed to in
writing, software distributed under the Licence is
distributed on an "AS IS" basis,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.
See the Licence for the specific language governing
permissions and limitations under the Licence.

"""Observe the state of an external RF field.

Usage: ::

rfstate.py [options]

This is a simple utility to observe when a remote device activates and
deactivates the 13.56 MHz carrier frequency. For each state change a
message is printed with timestamp, the transition and time elapsed
since the previous state change. This only works with some devices
based on PN53x and uses nfcpy internal interfaces.

Options:

-h, --help show this help message and exit
-t, --time T listen time in seconds [default: 2.5]
-d, --debug output debug log messages to stderr
-v, --verbose print and log more information
--device PATH local device search path [default: usb]

"""
from __future__ import print_function

import re
import sys
import time
import errno
import logging

import nfc
import nfc.clf

(continues on next page)

6.6. rfstate.py 51

nfcpy documentation, Release 0.13.6

(continued from previous page)

import nfc.clf.pn53x

def main(args):
if args["--debug"]:

loglevel = logging.DEBUG - (1 if args["--verbose"] else 0)
logging.getLogger("nfc.clf").setLevel(loglevel)

try:
time_to_return = time.time() + float(args['--time'])

except ValueError as e:
logging.error("while parsing '--time' " + str(e)); sys.exit(-1)

clf = nfc.ContactlessFrontend()
if clf.open(args['--device']):

try:
assert isinstance(clf.device, nfc.clf.pn53x.Device), \

"rfstate.py does only work with PN53x based devices"
chipset = clf.device.chipset

regs = [("CIU_FIFOLevel", 0b10000000)] # clear fifo
regs.extend(zip(25*["CIU_FIFOData"], bytearray(25)))
regs.extend([

("CIU_Command", 0b00000001), # Configure command
("CIU_Control", 0b00000000), # act as target (b4=0)
("CIU_TxControl", 0b10000000), # disable output on TX1/TX2
("CIU_TxAuto", 0b00100000), # wake up when rf level detected
("CIU_CommIRq", 0b01111111), # clear interrupt request bits
("CIU_DivIRq", 0b01111111), # clear interrupt request bits

])
chipset.write_register(*regs)

if args["--verbose"]:
time_t0 = time.time()
chipset.read_register("CIU_Status1", "CIU_Status2")
delta_t = time.time() - time_t0
print("approx. %d samples/s" % int(1/delta_t))

status = chipset.read_register("CIU_Status1", "CIU_Status2")
rfstate = "ON" if status[1] & 0b00100000 else "OFF"
time_t0 = time.time()
print("%.6f RF %s" % (time_t0, rfstate))

while time.time() < time_to_return:
status = chipset.read_register("CIU_Status1", "CIU_Status2")
if rfstate == "OFF" and status[1] & 0x20 == 0x20:

rfstate = "ON"
time_t1 = time.time()
delta_t = time_t1 - time_t0
print("%.6f RF ON after %.6f" % (time_t1, delta_t))
time_t0 = time_t1

if rfstate == "ON" and status[1] & 0x20 == 0x00:
rfstate = "OFF"
time_t1 = time.time()
delta_t = time_t1 - time_t0
print("%.6f RF OFF after %.6f" % (time_t1, delta_t))
time_t0 = time_t1

except nfc.clf.UnsupportedTargetError as error:
(continues on next page)

52 Chapter 6. Example Programs

nfcpy documentation, Release 0.13.6

(continued from previous page)

print(repr(error))
except IOError as error:

if error.errno == errno.EIO:
print("lost connection to local device")

else: print(repr(error))
except (NotImplementedError, AssertionError) as error:

print(str(error))
except KeyboardInterrupt:

pass
finally:

clf.close()

if __name__ == '__main__':
logging.basicConfig(format='%(relativeCreated)d ms [%(name)s] %(message)s')

try:
from docopt import docopt

except ImportError:
sys.exit("the 'docopt' module is needed to execute this program")

remove restructured text formatting before input to docopt
usage = re.sub(r'(?<=\n)**(\w+:)**.*\n', r'\1', __doc__)
sys.exit(main(docopt(usage)))

6.6. rfstate.py 53

nfcpy documentation, Release 0.13.6

54 Chapter 6. Example Programs

CHAPTER 7

Interoperability Tests

7.1 Logical Link Control Protocol

7.1.1 llcp-test-server.py

The LLCP test server program implements an NFC device that provides three distinct server applications:

1. A connection-less echo server that accepts connection-less transport mode PDUs. Service data units may have
any size between zero and the maximum information unit size announced with the LLCP Link MIU parameter.
Inbound service data units enter a linear buffer of service data units. The buffer has a capacity of two service data
units. The first service data unit entering the buffer starts a delay timer of 2 seconds (echo delay). Expiration
of the delay timer causes service data units in the buffer to be sent back to the original sender, which may be
different for each service data unit, until the buffer is completely emptied. The buffer empty condition then
re-enables the delay timer start event for the next service data unit.

2. A connection-mode echo server that waits for a connect request and then accepts and processes connection-
oriented transport mode PDUs. Further connect requests will be rejected until termination of the data link
connection. When accepting the connect request, the receive window parameter is transmitted with a value of 2.

The connection-oriented mode echo service stores inbound service data units in a linear buffer of service data
units. The buffer has a capacity of three service data units. The first service data unit entering the buffer starts
a delay timer of 2 seconds (echo delay). Expiration of the delay timer causes service data units in the buffer
to be sent back to the orignal sender until the buffer is completely emptied. The buffer empty condition then
re-enables the delay timer start event for the next service data unit.

The echo service determines itself as busy if it is unable to accept further incoming service data units.

3. A connection-mode dump server that accepts connections and then accepts and forgets all data received on a
data link connection. This is mostly useful to measure transfer speed under load conditions.

Usage

$ llcp-test-server.py [-h|--help] [OPTION]...

Options

55

nfcpy documentation, Release 0.13.6

--loop, -l
Repeat the command endlessly, use Control-C to abort.

--mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

--miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

--lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

--listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

--no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with -f. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, -d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless -q is set to supress info messages on <stderr>.

--nolog-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.llcp.
llc module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

--device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

• usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb:054c the first Sony reader.

• usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb:001 would mean to use the first available reader on bus number 1.

• tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty:USB0:arygon for the Arygon APPx/ADRx at /dev/ttyUSB0.

• com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

• udp[:host][:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

56 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

7.1.2 llcp-test-client.py

Usage

$ llcp-test-client.py [-h|--help] [OPTION]...

Options

-t N, --test N
Run test number N. May be set more than once.

-T, --test-all
Run all tests.

--cl-echo SAP
Service access point address of the connection-less mode echo server.

--co-echo SAP
Service access point address of the connection-oriented mode echo server.

--loop, -l
Repeat the command endlessly, use Control-C to abort.

--mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

--miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

--lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

--listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

--no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with -f. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, -d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless -q is set to supress info messages on <stderr>.

--nolog-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.llcp.
llc module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

--device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

7.1. Logical Link Control Protocol 57

nfcpy documentation, Release 0.13.6

• usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb:054c the first Sony reader.

• usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb:001 would mean to use the first available reader on bus number 1.

• tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty:USB0:arygon for the Arygon APPx/ADRx at /dev/ttyUSB0.

• com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

• udp[:host][:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

Test Scenarios

Link activation, symmetry and deactivation

$ llcp-test-client.py -t 1

Verify that the LLCP Link can be activated successfully, that the symmetry procedure is performed and the link can
be intentionally deactivated.

1. Start the MAC link activation procedure on two implementations and verify that the version number parameter
is received and version number agreement is achieved.

2. Verify for a duration of 5 seconds that SYMM PDUs are exchanged within the Link Timout values provided by
the implementations.

3. Perform intentional link deactivation by sending a DISC PDU to the remote Link Management component.
Verify that SYMM PDUs are no longer exchanged.

Connection-less information transfer

$ llcp-test-client.py -t 2

Verify that the source and destination access point address fields are correctly interpreted, the content of the infor-
mation field is extracted as the service data unit and the service data unit can take any length between zero and the
announced Link MIU. The LLCP Link must be activated prior to running this scenario and the Link MIU of the peer
implementation must have been determined. In this scenario, sending of a service data unit (SDU) means that the SDU
is carried within the information field of a UI PDU.

1. Send a service data unit of 128 octets length to the connection-less mode echo service and verify that the same
SDU is sent back after the echo delay time.

2. Send within echo delay time with a time interval of at least 0.5 second two consecutive service data units of 128
octets length to the connection-less mode echo service and verify that both SDUs are sent back correctly.

3. Send within echo delay time with a time interval of at least 0.5 second three consecutive service data units of
128 octets length to the connection-less mode echo service and verify that the first two SDUs are sent back
correctly and the third SDU is discarded.

58 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

4. Send a service data unit of zero octets length to the connection-less mode echo service and verify that the same
zero length SDU is sent back after the echo delay time.

5. Send a service data unit of maximum octets length to the connection-less mode echo service and verify that the
same SDU is sent back after the echo delay time. Note that the maximum length here must be the smaller value
of both implementations Link MIU.

Connection-oriented information transfer

$ llcp-test-client.py -t 3

Verify that a data link connection can be established, a service data unit is received and sent back correctly and the
data link connection can be terminated. The LLCP Link must be activated prior to running this scenario and the
connection-oriented mode echo service must be in the unconnected state. In this scenario, sending of a service data
unit (SDU) means that the SDU is carried within the information field of an I PDU.

1. Send a CONNECT PDU to the connection-oriented mode echo service and verify that the connection request is
acknowledged with a CC PDU. The CONNECT PDU shall encode the RW parameter with a value of 2. Verify
that the CC PDU encodes the RW parameter with a value of 2 (as specified for the echo server).

2. Send a single service data unit of 128 octets length over the data link connection and verify that the echo service
sends an RR PDU before returning the same SDU after the echo delay time.

3. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Send and receive sequence number handling

$ llcp-test-client.py -t 4

Verify that a sequence of service data units that causes the send and receive sequence numbers to take all possible
values is received and sent back correctly. The LLCP Link must be activated prior to running this scenario and the
connection-oriented mode echo service must be in the unconnected state. In this scenario, sending of a service data
unit (SDU) means that the SDU is carried within the information field of an I PDU.

1. Send a CONNECT PDU to the connection-oriented mode echo service and verify that the connection request is
acknowledged with a CC PDU. The CONNECT PDU shall encode the RW parameter with a value of 2. Verify
that the CC PDU encodes the RW parameter with a value of 2 (as specified for the echo server).

2. Send a sequence of at least 16 data units of each 128 octets length over the data link connection and verify that
all SDUs are sent back correctly.

3. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Handling of receiver busy condition

$ llcp-test-client.py -t 5

Verify the handling of a busy condition. The LLCP Link must be activated prior to running this scenario and the
connection-oriented mode echo service must be in the unconnected state. In this scenario, sending of a service data
unit (SDU) shall mean that the SDU is carried within the information field of an I PDU.

7.1. Logical Link Control Protocol 59

nfcpy documentation, Release 0.13.6

1. Send a CONNECT PDU to the connection-oriented mode echo service and verify that the connect request is
acknowledged with a CC PDU. The CONNECT PDU shall encode the RW parameter with a value of 0. Verify
that the CC PDU encodes the RW parameter with a value of 2 (as specified for the echo server).

2. Send four service data units of 128 octets length over the data link connection and verify that the echo service
enters the busy state when acknowledging the last packet.

3. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Rejection of connect request

$ llcp-test-client.py -t 6

Verify that an attempt to establish a second connection with the connection-oriented mode echo service is rejected.
The LLCP Link must be activated prior to running this scenario.

1. Send a first CONNECT PDU to the connection-oriented mode echo service and verify that the connect request
is acknowledged with a CC PDU.

2. Send a second CONNECT PDU to the connection-oriented mode echo service and verify that the connect
request is rejected with a DM PDU and appropriate reason code.

3. Send a service data unit of 128 octets length over the data link connection and verify that the echo service returns
the same SDU after the echo delay time.

4. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Connect by service name

$ llcp-test-client.py -t 7

Verify that a data link connection can be established by specifying a service name. The LLCP Link must be activated
prior to running this scenario and the connection-oriented mode echo service must be in the unconnected state.

1. Send a CONNECT PDU with an SN parameter that encodes the value “urn:nfc:sn:co-echo” to the service
discovery service access point address and verify that the connect request is acknowledged with a CC PDU.

2. Send a service data unit over the data link connection and verify that it is sent back correctly.

3. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Aggregation and disaggregation

$ llcp-test-client.py -t 8

Verify that the aggregation procedure is performed correctly. The LLCP Link must be activated prior to running
this scenario. In this scenario, sending of a service data unit (SDU) shall mean that the SDU is carried within the
information field of a UI PDU.

1. Send two service data units of 50 octets length to the connection-less mode echo service such that the two
resulting UI PDUs will be aggregated into a single AGF PDU by the LLC sublayer. Verify that both SDUs are
sent back correctly and in the same order.

60 Chapter 7. Interoperability Tests

urn:nfc:sn:co-echo

nfcpy documentation, Release 0.13.6

2. Send three service data units of 50 octets length to the connection-less mode echo service such that the three
resulting UI PDUs will be aggregated into a single AGF PDU by the LLC sublayer. Verify that the two first
SDUs are sent back correctly and the third SDU is discarded.

Service name lookup

$ llcp-test-client.py -t 9

Verify that a service name is correctly resolved into a service access point address by the remote LLC. The LLCP Link
must be activated prior to running this scenario. In this scenario, sending of a service data unit (SDU) shall mean that
the SDU is carried within the information field of a UI PDU.

1. Send an SNL PDU with an SDREQ parameter in the information field that encodes the value “urn:nfc:sn:sdp”
to the service discovery service access point address and verify that the request is responded with an SNL PDU
that contains an SDRES parameter with the SAP value ‘1’ and a TID value that is the same as the value encoded
in the antecedently transmitted SDREQ parameter.

2. Send an SNL PDU with an SDREQ parameter in the information field that encodes the value “urn:nfc:sn:
cl-echo” to the service discovery service access point address and verify that the request is responded with an
SNL PDU that contains an SDRES parameter with a SAP value other than ‘0’ and a TID value that is the same
as the value encoded in the antecedently transmitted SDREQ parameter.

3. Send a service data unit of 128 octets length to the service access point address received in step 2 and verify that
the same SDU is sent back after the echo delay time.

4. Send an SNL PDU with an SDREQ parameter in the information field that encodes the value “urn:nfc:sn:
sdp-test” to the service discovery service access point address and verify that the request is responded with an
SNL PDU that contains an SDRES parameter with the SAP value ‘0’ and a TID value that is the same as the
value encoded in the antecedently transmitted SDREQ parameter.

Send more data than allowed

$ llcp-test-client.py -t 10

Use invalid send sequence number

$ llcp-test-client.py -t 11

Use maximum data size on data link connection

$ llcp-test-client.py -t 12

Connect, release and connect again

$ llcp-test-client.py -t 13

7.1. Logical Link Control Protocol 61

urn:nfc:sn:sdp
urn:nfc:sn:cl-echo
urn:nfc:sn:cl-echo
urn:nfc:sn:sdp-test
urn:nfc:sn:sdp-test

nfcpy documentation, Release 0.13.6

Connect to unknown service name

$ llcp-test-client.py -t 14

Verify that a data link connection can be established by specifying a service name. The LLCP Link must be activated
prior to running this scenario and the connection-oriented mode echo service must be in the unconnected state.

1. Send a CONNECT PDU with an SN parameter that encodes the value “urn:nfc:sn:co-echo-unknown” to the
service discovery service access point address and verify that the connect request is rejected.

7.2 Simple NDEF Exchange Protocol

7.2.1 snep-test-server.py

The SNEP test server program implements an NFC device that provides two SNEP servers:

1. A Default SNEP Server that is compliant with the NFC Forum Default SNEP Server defined in section 6 of the
SNEP specification.

2. A Validation SNEP Server that accepts SNEP Put and Get requests. A Put request causes the server to store the
NDEF message transmitted with the request. A Get request causes the server to attempt to return a previously
stored NDEF message of the same NDEF message type and identifier as transmitted with the request. The server
will keep any number of distinct NDEF messages received with Put request until the client terminates the data
link connection.

The Validation SNEP Server uses the service name urn:nfc:xsn:nfc-forum.
org:snep-validation, assigned for the purpose of validating the SNEP candidate specification
prior to adoption.

Usage

$ snep-test-server.py [-h|--help] [OPTION]...

Options

--loop, -l
Repeat the command endlessly, use Control-C to abort.

--mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

--miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

--lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

--listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

--no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

62 Chapter 7. Interoperability Tests

urn:nfc:sn:co-echo-unknown

nfcpy documentation, Release 0.13.6

-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with -f. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, -d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless -q is set to supress info messages on <stderr>.

--nolog-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.llcp.
llc module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

--device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

• usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb:054c the first Sony reader.

• usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb:001 would mean to use the first available reader on bus number 1.

• tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty:USB0:arygon for the Arygon APPx/ADRx at /dev/ttyUSB0.

• com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

• udp[:host][:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

7.2.2 snep-test-client.py

Usage

$ snep-test-client.py [-h|--help] [OPTION]...

Options

-t N, --test N
Run test number N. May be set more than once.

-T, --test-all
Run all tests.

--loop, -l
Repeat the command endlessly, use Control-C to abort.

--mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

--miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

7.2. Simple NDEF Exchange Protocol 63

nfcpy documentation, Release 0.13.6

--lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

--listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

--no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with -f. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, -d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless -q is set to supress info messages on <stderr>.

--nolog-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.llcp.
llc module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

--device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

• usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb:054c the first Sony reader.

• usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb:001 would mean to use the first available reader on bus number 1.

• tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty:USB0:arygon for the Arygon APPx/ADRx at /dev/ttyUSB0.

• com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

• udp[:host][:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

Test Scenarios

Connect and terminate

$ snep-test-client.py -t 1

Verify that a data link connection with the remote validation server can be established and terminated gracefully and
that the server returns to a connectable state.

64 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

1. Establish a data link connection with the Validation Server.

2. Verify that the data link connection was established successfully.

3. Close the data link connection with the Validation Server.

4. Establish a new data link connection with the Validation Server.

5. Verify that the data link connection was established successfully.

6. Close the data link connection with the Validation Server.

Unfragmented message exchange

$ snep-test-client.py -t 2

Verify that the remote validation server is able to receive unfragmented SNEP messages.

1. Establish a data link connection with the Validation Server.

2. Send a Put request with an NDEF message of no more than 122 octets total length.

3. Verify that the Validation Server accepted the Put request.

4. Send a Get request that identifies the NDEF message sent in step 2 to be retrieved.

5. Verify that the retrieved NDEF message is identical to the one transmitted in step 2.

6. Close the data link connection.

Fragmented message exchange

$ snep-test-client.py -t 3

Verify that the remote validation server is able to receive fragmented SNEP messages.

1. Establish a data link connection with the Validation Server.

2. Send a Put request with an NDEF message of more than 2170 octets total length.

3. Verify that the Validation Server accepted the Put request.

4. Send a Get request that identifies the NDEF message sent in step 2 to be retrieved.

5. Verify that the retrieved NDEF message is identical to the one transmitted in step 2.

6. Close the data link connection.

Multiple ndef messages

$ snep-test-client.py -t 4

Verify that the remote validation server accepts more than a single NDEF message on the same data link connection.

1. Establish a data link connection with the Validation Server.

2. Send a Put request with an NDEF message that differs from the NDEF message to be send in step 3.

3. Send a Put request with an NDEF message that differs from the NDEF message that has been send send in step
2.

7.2. Simple NDEF Exchange Protocol 65

nfcpy documentation, Release 0.13.6

4. Send a Get request that identifies the NDEF message sent in step 2 to be retrieved.

5. Send a Get request that identifies the NDEF message sent in step 3 to be retrieved.

6. Verify that the retrieved NDEF messages are identical to the NDEF messages transmitted in steps 2 and 3.

7. Close the data link connection.

Undeliverable resource

$ snep-test-client.py -t 5

Verify verify that the remote validation server responds appropriately if the client requests an NDEF message that
exceeds the maximum acceptable length specified by the request.

1. Establish a data link connection with the Validation Server.

2. Send a Put request with an NDEF message of total lenght N.

3. Verify that the Validation Server accepted the Put request.

4. Send a Get request with the maximum acceptable lenght field set to N 1 and an NDEF message that identifies
the NDEF message sent in step 2 to be retrieved.

5. Verify that the server replies with the appropriate response message.

6. Close the data link connection.

Unavailable resource

$ snep-test-client.py -t 6

Verify that the remote validation server responds appropriately if the client requests an NDEF message that is not
available.

1. Establish a data link connection with the Validation Server.

2. Send a Get request that identifies an arbitrary NDEF message to be retrieved.

3. Verify that the server replies with the appropriate response message.

4. Close the data link connection.

Default server limits

$ snep-test-client.py -t 7

Verify verify that the remote default server accepts a Put request with an information field of up to 1024 octets, and
that it rejects a Get request.

1. Establish a data link connection with the Default Server.

2. Send a Put request with an NDEF message of up to 1024 octets total length.

3. Verify that the Default Server replies with a Success response message.

4. Send a Get request with an NDEF message of arbitrary type and identifier.

5. Verify that the Default Server replies with a Not Implemented response message.

66 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

6. Close the data link connection.

7.3 Connection Handover

The handover-test-server.py and handover-test-client.py programs provide a test facility for the NFC Forum Con-
nection Handover 1.2 specification.

7.3.1 handover-test-server.py

Usage:

$ handover-test-server.py [-h|--help] [OPTION]... [CARRIER]...

The handover test server implements the handover selector role. A handover client can connect to the server with the
well-known service name urn:nfc:sn:handover and send handover request messages. The server replies with
handover select messages populated with carriers provided through CARRIER arguments and matching the a carrier in
the received handover request carrier list.

Each CARRIER argument must provide an NDEF message file, which may be a handover select message with one or
more alternative carriers (including auxiliary data) or an alternative carrier record optionally followed by one or more
auxiliary data records. Note that only the handover select message format allows to specify the carrier power state. All
carriers including power state information and auxiliary data records are accumulated into a list of selectable carriers,
ordered by argument position and carrier sequence within a handover select message.

Unless the --skip-local option is given, the server attempts to include carriers that are locally available on the
host device. Local carriers are always added after all CARRIER arguments.

Note: Local carrier detection currently requires a Linux OS with the bluez Bluetooth stack and D-Bus. This is true
for many Linux distributions, but has so far only be tested on Ubuntu.

Options:

--skip-local
Skip the local carrier detection. Without this option the handover test server tries to discover locally available
carriers and consider them in the selection process. Local carriers are considered after all carriers provided
manually.

--select NUM
Return at most NUM carriers with the handover select message. The default is to return all matching carriers.

--delay INT
Delay the handover response for the number of milliseconds specified as INT. The handover specification says
that the server should answer within 1 second and if it doesn’t the client may assume a processing error.

--recv-miu INT
Set the maximum information unit size for inbound LLCP packets on the data link connection between the
server and the remote client. This value is transmitted with the CC PDU to the remote client.

--recv-buf INT
Set the receive window size for inbound LLCP packets on the data link connection between the server and the
remote client. This value is transmitted with the CC PDU to the remote client.

--quirks
This option causes the handover test server to try support non-compliant implementations if possible and as
known. Currently implemented work-arounds are:

7.3. Connection Handover 67

nfcpy documentation, Release 0.13.6

• a ‘urn:nfc:sn:snep’ server is enabled and accepts the GET request with a handover request message that
was implemented in Android Jelly Bean

• the version of the handover request message sent by Android Jelly Bean is changed to 1.1 to accomodate
the missing collision resolution record that is required for version 1.2.

• the incorrect type-name-format encoding in handover carrier records sent by some Sony Xperia phones is
corrected to mime-type.

Test Scenarios

Empty handover select response

$ handover-test-server.py --select 0

Verify that the remote handover client accepts a handover select message that has no alternative carriers.

A carrier that is being activated

$ ndeftool.py make btcfg 01:02:03:04:05:06 --activating | handover-test-server --skip-
→˓local -

Verify that the remote handover client understands and tries to connect to a Bluetooth carrier that is in the process of
activation.

Delayed handover select response

$ examples/handover-test-server.py --delay 10000

Check hot the remote handover implementation behaves if the handover select response is delayed for about 10 sec-
onds. This test intends to help identify user interface issues.

7.3.2 handover-test-client.py

Usage

$ handover-test-client.py [-h|--help] [OPTION]... [CARRIER]...

The handover test client implements the handover requester role. The handover client connects to the remote server
with well-known service name urn:nfc:sn:handover and sends handover request messages populated with
carriers provided through one or more CARRIER arguments or implicitly if tests from the test suite are executed. The
client expects the server to reply with handover select messages that list carriers matching one or more of the carriers
sent with the handover request carrier list.

Each CARRIER argument must provide an NDEF message file which may be a handover message with one or more
alternative carriers (including auxiliary data) or an alternative carrier record followed by zero or more auxiliary data
records. Note that only the handover message format allows to specify the carrier power state. All carriers, including
power state information and auxiliary data records, are accumulated into a list of requestable carriers ordered by
argument position and carrier sequence within a handover message.

Options

68 Chapter 7. Interoperability Tests

urn:nfc:sn:snep

nfcpy documentation, Release 0.13.6

-t N, --test N
Run test number N from the test suite. Multiple tests can be specified.

--relax
The --relax option affects how missing optional, but highly recommended, handover data is handled when
running test scenarios. Without --relax any missing data is regarded as a test error that terminates test
execution. With the --relax option set only a warning message is logged.

--recv-miu INT
Set the maximum information unit size for inbound LLCP packets on the data link connection between the client
and the remote server. This value is transmitted with the CONNECT PDU to the remote server.

--recv-buf INT
Set the receive window size for inbound LLCP packets on the data link connection between the client and the
remote server. This value is transmitted with the CONNECT PDU to the remote server.

--quirks
This option causes the handover test client to try support non-compliant implementations as much as possible,
including and beyond the --relax behavor. The modifications activated with --quirks are:

• After test procedures are completed the client does not terminate the LLCP link but waits until the link is
disrupted to prevent the NFC stack segfault and recovery on pre 4.1 Android devices.

• Try sending the handover request message with a SNEP GET request to the remote default SNEP server if
the urn:nfc:sn:handover service is not available.

Test Scenarios

Presence and connectivity

$ handover-test-client.py -t 1

Verify that the remote device has the connection handover service active and that the client can open, close and re-open
a connection with the server.

1. Connect to the remote handover service.

2. Close the data link conection.

3. Connect to the remote handover service.

4. Close the data link conection.

Empty carrier list

$ handover-test-client.py -t 2

Verify that the handover server responds to a handover request without alternative carriers with a handover select
message that also has no alternative carriers.

1. Connect to the remote handover service.

2. Send a handover request message containing zero alternative carriers.

3. Verify that the server returns a handover select message within no more than 3 seconds; and that the message
contains zero alternative carriers.

4. Close the data link conection.

7.3. Connection Handover 69

nfcpy documentation, Release 0.13.6

Version handling

$ handover-test-client.py -t 3

Verify that the remote handover server handles historic and future handover request version numbers. This test is run
as a series of steps where for each step the connection to the server is established and closed after completion. For all
steps the configuration sent is a Bluetooth carrier for device address 01:02:03:04:05:06.

1. Connect to the remote handover service.

2. Send a handover request message with version 1.2.

3. Verify that the server replies with version 1.2.

4. Close the data link conection.

5. Connect to the remote handover service.

6. Send a handover request message with version 1.1.

7. Verify that the server replies with version 1.2.

8. Close the data link conection.

9. Connect to the remote handover service.

10. Send a handover request message with version 1.15.

11. Verify that the server replies with version 1.2.

12. Close the data link conection.

13. Connect to the remote handover service.

14. Send a handover request message with version 15.0.

15. Verify that the server replies with version 1.2.

16. Close the data link conection.

Bluetooth just-works pairing

$ handover-test-client.py -t 4

Verify that the application/vnd.bluetooth.ep.oob alternative carrier is correctly evaluated and replied.
This test is only applicable if the peer device does have Bluetooth connectivity.

1. Connect to the remote handover service.

2. Send a handover request message with a single alternative carrier of type application/vnd.bluetooth.
ep.oob and power state active. Secure pairing hash and randomizer are not provided with the Bluetooth
configuration.

3. Verify that the server returns a handover select message within no more than 3 seconds; that the message
contains exactly one alternative carrier with type application/vnd.bluetooth.ep.oob and power
state active or activating; that the Bluetooth local device name is transmitted; and that secure simple
pairing hash and randomizer are not transmitted. Issues a warning if class of device/service or service class
UUID attributes are not transmitted.

4. Close the data link conection.

70 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

Bluetooth secure pairing

$ handover-test-client.py -t 5

Verify that the application/vnd.bluetooth.ep.oob alternative carrier is correctly evaluated and replied.
This test is only applicable if the peer device does have Bluetooth connectivity.

1. Connect to the remote handover service.

2. Send a handover request message with a single alternative carrier of type application/vnd.bluetooth.
ep.oob and power state active. Secure pairing hash and randomizer are transmitted with the Bluetooth
configuration.

3. Verify that the server returns a handover select message within no more than 3 seconds; that the message
contains exactly one alternative carrier with type application/vnd.bluetooth.ep.oob and power
state active or activating; that the Bluetooth local device name is transmitted; and that secure simple
pairing hash and randomizer are transmitted. Issues a warning if class of device/service or service class UUID
attributes are not transmitted.

4. Close the data link conection.

Unknown carrier type

$ handover-test-client.py -t 6

Verify that the remote handover server returns a select message without alternative carriers if a single carrier of un-
known type was sent with the handover request.

1. Connect to the remote handover service.

2. Send a handover request message with a single alternative carrier of type urn:nfc:ext:nfcpy.
org:unknown-carrier-type.

3. Verify that the server returns a handover select message with an empty alternative carrier selection.

4. Close the data link conection.

Two handover requests

$ handover-test-client.py -t 7

Verify that the remote handover server does not close the data link connection after the first handover request message.

1. Connect to the remote handover service.

2. Send a handover request with a single carrier of unknown type

3. Send a handover request with a single Bluetooth carrier

4. Close the data link conection.

Reserved-future-use check

$ handover-test-client.py -t 8

7.3. Connection Handover 71

nfcpy documentation, Release 0.13.6

Verify that reserved bits are set to zero and optional reserved bytes are not present in the payload of the alternative
carrier record. This test requires that the remote server selects a Bluetooth alternative carrier if present in the request.

1. Connect to the remote handover service.

2. Send a handover request with a single Bluetooth carrier

3. Verify that an alternative carrier record is present; that reserved bits in the first octet are zero; and that the record
payload ends with the last auxiliary data reference.

4. Close the data link conection.

Skip meaningless records

$ handover-test-client.py -t 9

Verify that records that have no defined meaning in the payload of a handover request record are ignored. This test
assumes that the remote server selects a Bluetooth alternative carrier if present in the request.

1. Connect to the remote handover service.

2. Send a handover request with a single Bluetooth carrier and a meaningless text record as the first record of the
handover request record payload.

3. Verify that an Bluetooth alternative carrier record is returned.

4. Close the data link conection.

7.4 Personal Health Device Communication

7.4.1 phdc-test-manager.py

This program implements an NFC device that provides a PHDC manager with the well-known ser-
vice name urn:nfc:sn:phdc and a non-standard PHDC manager with the experimental service name
urn:nfc:xsn:nfc-forum.org:phdc-validation.

Usage

$ phdc-test-manager.py [-h|--help] [OPTION]...

Options

--loop, -l
Repeat the command endlessly, use Control-C to abort.

--mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

--miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

--lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

--listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

72 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

--no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

--wait
After reading or writing a tag, wait until it is removed before returning. This option is implicit when the option
--loop is set.

--technology {A,B,F}
Poll only for tags of a specific technology. The technologies NFC-A, NFC-B, and NFC-F are defined in the
NFC Forum Digital Specification. The technology indicator is case insensitive. The default is to poll for all
technologies.

-q
Do not print log messages except for errors and warnings.

-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with -f. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, -d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless -q is set to supress info messages on <stderr>.

--nolog-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.llcp.
llc module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

--device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

• usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb:054c the first Sony reader.

• usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb:001 would mean to use the first available reader on bus number 1.

• tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty:USB0:arygon for the Arygon APPx/ADRx at /dev/ttyUSB0.

• com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

• udp[:host][:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

7.4.2 phdc-test-agent.py p2p

Usage

$ phdc-test-agent.py p2p [-h|--help] [OPTION]...

7.4. Personal Health Device Communication 73

nfcpy documentation, Release 0.13.6

Options

-t N, --test N
Run test number N. May be set more than once.

-T, --test-all
Run all tests.

--loop, -l
Repeat the command endlessly, use Control-C to abort.

--mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

--miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

--lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

--listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

--no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with -f. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, -d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless -q is set to supress info messages on <stderr>.

--nolog-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.llcp.
llc module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

--device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

• usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb:054c the first Sony reader.

• usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb:001 would mean to use the first available reader on bus number 1.

• tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty:USB0:arygon for the Arygon APPx/ADRx at /dev/ttyUSB0.

74 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

• com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

• udp[:host][:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

Test Scenarios

Connect, Associate and Release

$ phdc-test-agent.py p2p -t 1

Verify that the Agent can connect to the PHDC Manager, associate with the IEEE Manager and finally release the
association.

1. Establish communication distance between the Thermometer Peer Agent and the Manager device.

2. Connect to the urn:nfc:sn:phdc service.

3. Send a Thermometer Association Request.

4. Verify that the Manager sends a Thermometer Association Response.

5. Wait 3 seconds not sending any IEEE APDU, then send an Association Release Request.

6. Verify that the Manager sends an Association Release Response

7. Disconnect from the urn:nfc:sn:phdc service.

8. Move Agent and Manager device out of communication range.

Association after Release

$ phdc-test-agent.py p2p -t 2

Verify that the Agent can again associate with the Manager after a first association has been established and released.

1. Establish communication distance between the Thermometer Peer Agent and the Manager device.

2. Connect to the urn:nfc:sn:phdc service.

3. Send a Thermometer Association Request.

4. Verify that the Manager sends a Thermometer Association Response.

5. Disconnect from the urn:nfc:sn:phdc service.

6. Connect to the urn:nfc:sn:phdc service.

7. Send a Thermometer Association Request.

8. Verify that the Manager sends a Thermometer Association Response.

9. Send a Association Release Request.

10. Verify that the Manager sends a Association Release Response.

11. Disconnect from the urn:nfc:sn:phdc service.

12. Move Agent and Manager device out of communication range.

7.4. Personal Health Device Communication 75

nfcpy documentation, Release 0.13.6

PHDC PDU Fragmentation and Reassembly

$ phdc-test-agent.py p2p -t 3

Verify that large PHDC PDUs are correctly fragmented and reassembled.

1. Establish communication distance between the Validation Agent and the Manager device.

2. Connect to the urn:nfc:xsn:nfc-forum.org:phdc-validation service.

3. Send a PHDC PDU with an Information field of 2176 random octets.

4. Verify to receive an PHDC PDU that contains the same random octets in reversed order.

5. Disconnect from the urn:nfc:xsn:nfc-forum.org:phdc-validation service.

6. Move Agent and Manager device out of communication range.

7.4.3 phdc-test-agent.py tag

Usage

$ phdc-test-agent.py tag [-h|--help] [OPTION]...

Options

-t N, --test N
Run test number N. May be set more than once.

-T, --test-all
Run all tests.

--loop, -l
Repeat the command endlessly, use Control-C to abort.

-q
Do not print log messages except for errors and warnings.

-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with -f. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, -d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless -q is set to supress info messages on <stderr>.

--nolog-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.llcp.
llc module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

--device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

• usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb:054c the first Sony reader.

76 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

• usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb:001 would mean to use the first available reader on bus number 1.

• tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty:USB0:arygon for the Arygon APPx/ADRx at /dev/ttyUSB0.

• com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

• udp[:host][:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

Test Scenarios

Discovery, Association and Release

$ phdc-test-agent.py tag -t 1

Verify that a PHDC Tag Agent is discovered by a PHDC Manager and IEEE APDU exchange is successful.

1. Establish communication distance between the Thermometer Tag Agent and the Manager.

2. Send a Thermometer Association Request.

3. Verify that the Manager sends a Thermometer Association Response.

4. Wait 3 seconds not sending any IEEE APDU, then send an Association Release Request.

5. Verify that the Manager sends a Association Release Response.

6. Move Thermometer Tag Agent and Manager out of communication range.

Association after Release

$ phdc-test-agent.py tag -t 2

Verify that a Tag Agent can again associate with the Manager after a first association has been established and released.

1. Establish communication distance between the Thermometer Tag Agent and the Manager.

2. Send a Thermometer Association Request.

3. Verify that the Manager sends a Thermometer Association Response.

4. Send an Association Release Request.

5. Verify that the Manager sends a Association Release Response.

6. Wait 3 seconds not sending any IEEE APDU, then send a Thermometer Association Request.

7. Verify that the Manager sends a Thermometer Association Response.

8. Move Thermometer Tag Agent and Manager out of communication range.

7.4. Personal Health Device Communication 77

nfcpy documentation, Release 0.13.6

Activation with invalid settings

$ phdc-test-agent.py tag -t 3

Verify that a PHDC Manager refuses communication with a Tag Agent that presents an invalid PHDC record payload
during activation.

1. Establish communication distance between the Tag Agent and the Manager.

2. Send the first PHDC PDU with invalid settings in one or any of the MC, LC or MD fields.

3. Verify that the Manager stops further PHDC communication with the Tag Agent.

Activation with invalid RFU value

$ phdc-test-agent.py tag -t 4

Verify that a PHDC Manager communicates with a Tag Agent that presents a PHDC record payload with an invalid
RFU value during activation.

1. Establish communication distance between the Tag Agent and the Manager.

2. Send the first PHDC PDU with an invalid value in the RFU field.

3. Verify that the Manager continues PHDC communication with the Tag Agent.

7.5 Generate Test Tags

This page contains instructions to generate tags for testing reader compliance with NFC Forum Tag Type, NDEF and
RTD specifications. The tools used are in the examples directory.

7.5.1 Type 3 Tags

Attribute Block Tests

This is a collection of tags to test processing of the the Type 3 Tag attribute information block. These can be used
to verify if the NFC device correctly reads or writes tags with different attribute information, both valid and invalid.
Below figure (from the NFC Forum Type 3 Tag Operation Specification) shows the Attribute Information Format.

TT3_READ_BV_001

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy
→˓documentation hosted on readthedocs" | ./tagtool.py load -
$./tagtool.py format tt3 --len 80 --max 5 --rw 0

78 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

• Settings: Len = Nmaxb * 16, RWFlag = 0x00

• Expected: Fully used tag. Read all data stored (Len)

TT3_READ_BV_002

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
→˓" | ./tagtool.py load -
$./tagtool.py format tt3 --len 58 --rw 0 --nbr 1

• Settings: Nbr = 1, RWFlag = 0x00

• Expected: Identify as „Read Only“ (normal read-only tag, read only 1 block at a time)

TT3_READ_BV_003

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
→˓" | ./tagtool.py load -
$./tagtool.py format tt3 --len 58 --rw 0 --max 3

• Nbr > Nbmax, RWFlag = 0x00

• Read Nbmax blocks (NOT read Nbr blocks)

TT3_READ_BV_004

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
→˓" | ./tagtool.py load -
$./tagtool.py format tt3 --len 58 --rw 0 --wf 15

• WriteFlag = 0x0F, RWFlag = 0x00

• Identify as „corrupted data“ (previous write interrupted)

TT3_READ_BV_005

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
→˓" | ./tagtool.py load -
$./tagtool.py format tt3 --len 58 --rw 0 --max 3

• Nmaxb * 16 < Len, RWFlag = 0x00

• Identify as „Corrupted data“ (invalid length)

TT3_READ_BV_006

7.5. Generate Test Tags 79

nfcpy documentation, Release 0.13.6

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t `python -c
→˓'print(810*"nfcpy")'` | ./tagtool.py load -
$./tagtool.py format tt3 --len 4495 --rw 0

• Nmaxb > 255, Len > 255, RWFlag = 0x00

• Read all data. Identify as „Read Only“. Write prohibited. (normal read-only tag)

• Requires a tag with more than 4 kbyte NDEF capacity

TT3_READ_BI_001

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
→˓" | ./tagtool.py load -
$./tagtool.py format tt3 --len 58 --rw 0 --nbr 0 --nbw 0

• Nbr = 0, Nbw = 0, RWFlag = 0x00

• Identify as „Corrupted data“ (invalid attribute information block)

TT3_READ_BI_002

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
→˓" | ./tagtool.py load -
$./tagtool.py format tt3 --len 58 --rw 0 --crc 4660

• Checksum invalid, RWFlag = 0x00

• Identify as „Corrupted data“ (invalid attribute information block)

TT3_READ_BI_003

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
→˓" | ./tagtool.py load -
$./tagtool.py format tt3 --len 58 --rw 0 --ver 2.0

• Version = 2.0, RWFlag = 0x00

• Identify as unknown version

TT3_READ_BI_004

$./tagtool.py format
$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
→˓" | ./tagtool.py load -
$./tagtool.py format tt3 --len 58 --rw 0 --rfu 255

• All unused bytes in attribute block = 0xFF

80 Chapter 7. Interoperability Tests

nfcpy documentation, Release 0.13.6

• Ignore when reading RWFlag = 0x00

TT3_WRITE_BV_001

$./tagtool.py format tt3 --rw 0

• RWFlag = 0x00, no content

• Identify as „Read Only“. Write prohibited. (normal read-only tag)

TT3_WRITE_BV_002

$./tagtool.py format tt3 --rw 1

• RWFlag = 0x01, no content

• Identify as „Read/Write“. Write permitted. (normal writtable tag)

TT3_WRITE_BV_003

$./tagtool.py format tt3 --rw 0 --max 4

• Nbw > Nbmax, RWFlag = 0x01

• Write Nbmax blocks (not write Nbw blocks)

7.5. Generate Test Tags 81

nfcpy documentation, Release 0.13.6

82 Chapter 7. Interoperability Tests

CHAPTER 8

Module Reference

8.1 nfc

8.1.1 nfc.ContactlessFrontend

class nfc.ContactlessFrontend
Shorthand for nfc.clf.ContactlessFrontend.

8.2 nfc.clf

• Contactless Frontend

• Technology Types

• Exceptions

• Driver Interface

• Device Drivers

– rcs380

– pn531

– pn532

– pn533

– rcs956

– acr122

– udp

83

nfcpy documentation, Release 0.13.6

8.2.1 Contactless Frontend

Note: The contactless frontend defined in this module is also available as nfc.ContactlessFrontend.

8.2.2 Technology Types

8.2.3 Exceptions

8.2.4 Driver Interface

8.2.5 Device Drivers

rcs380

pn531

pn532

pn533

rcs956

acr122

udp

8.3 nfc.tag

• Type 1 Tag

• Type 2 Tag

• Type 3 Tag

• Type 4 Tag

84 Chapter 8. Module Reference

nfcpy documentation, Release 0.13.6

8.3.1 Type 1 Tag

8.3.2 Type 2 Tag

8.3.3 Type 3 Tag

8.3.4 Type 4 Tag

8.4 nfc.ndef

Warning: The nfc.ndef submodule is superseded by the separate ndeflib module and will eventually be removed
from nfcpy.

Deprecated since version 0.12: Use ndeflib.

• nfc.ndef.Message

• nfc.ndef.Record

• nfc.ndef.TextRecord

• nfc.ndef.UriRecord

• nfc.ndef.SmartPosterRecord

• nfc.ndef.HandoverRequestMessage

• nfc.ndef.HandoverSelectMessage

• nfc.ndef.HandoverCarrierRecord

• nfc.ndef.handover.Version

• nfc.ndef.handover.Carrier

• nfc.ndef.handover.HandoverError

• nfc.ndef.BluetoothConfigRecord

• nfc.ndef.WifiConfigRecord

• nfc.ndef.WifiPasswordRecord

Deprecated since version 0.12: Use ndeflib.

8.4.1 nfc.ndef.Message

Deprecated since version 0.12: Use ndeflib.

8.4.2 nfc.ndef.Record

Deprecated since version 0.12: Use ndeflib.

Deprecated since version 0.12: Use ndeflib.

8.4. nfc.ndef 85

https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io

nfcpy documentation, Release 0.13.6

8.4.3 nfc.ndef.TextRecord

Deprecated since version 0.12: Use ndeflib.

8.4.4 nfc.ndef.UriRecord

Deprecated since version 0.12: Use ndeflib.

8.4.5 nfc.ndef.SmartPosterRecord

Deprecated since version 0.12: Use ndeflib.

8.4.6 nfc.ndef.HandoverRequestMessage

Deprecated since version 0.12: Use ndeflib.

8.4.7 nfc.ndef.HandoverSelectMessage

Deprecated since version 0.12: Use ndeflib.

8.4.8 nfc.ndef.HandoverCarrierRecord

Deprecated since version 0.12: Use ndeflib.

8.4.9 nfc.ndef.handover.Version

Deprecated since version 0.12: Use ndeflib.

8.4.10 nfc.ndef.handover.Carrier

Deprecated since version 0.12: Use ndeflib.

8.4.11 nfc.ndef.handover.HandoverError

Deprecated since version 0.12: Use ndeflib.

8.4.12 nfc.ndef.BluetoothConfigRecord

Deprecated since version 0.12: Use ndeflib.

8.4.13 nfc.ndef.WifiConfigRecord

Deprecated since version 0.12: Use ndeflib.

86 Chapter 8. Module Reference

https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io

nfcpy documentation, Release 0.13.6

8.4.14 nfc.ndef.WifiPasswordRecord

Deprecated since version 0.12: Use ndeflib.

8.5 nfc.llcp

8.5.1 nfc.llcp.Socket

8.5.2 nfc.llcp.llc.LogicalLinkController

8.6 nfc.snep

8.6.1 nfc.snep.SnepServer

8.6.2 nfc.snep.SnepClient

8.7 nfc.handover

8.7.1 nfc.handover.HandoverServer

8.7.2 nfc.handover.HandoverClient

8.5. nfc.llcp 87

https://ndeflib.readthedocs.io

nfcpy documentation, Release 0.13.6

88 Chapter 8. Module Reference

Index

Symbols
-activating

ndeftool.py-make-btcfg command
line option, 38

ndeftool.py-make-wificfg command
line option, 37

-active
ndeftool.py-make-btcfg command

line option, 38
ndeftool.py-make-wificfg command

line option, 37
-bitrate {212,424}

tagtool.py-format command line
option, 34

-cl-echo SAP
llcp-test-client.py command line

option, 57
-co-echo SAP

llcp-test-client.py command line
option, 57

-crc N
tagtool.py-format-tt3 command line

option, 33
-delay INT

handover-test-server.py command
line option, 67

-dep params
command line option, 45

-device PATH
beam.py command line option, 41
llcp-test-client.py command line

option, 57
llcp-test-server.py command line

option, 56
phdc-test-agent.py-p2p command

line option, 74
phdc-test-agent.py-tag command

line option, 76

phdc-test-manager.py command line
option, 73

snep-test-client.py command line
option, 64

snep-test-server.py command line
option, 63

tagtool.py command line option, 30
-device path

command line option, 45
-from BLOCK

tagtool.py-protect command line
option, 33

-hs
ndeftool.py-make-btcfg command

line option, 38
ndeftool.py-make-wificfg command

line option, 37
-idm HEX

tagtool.py-format command line
option, 34

-inactive
ndeftool.py-make-btcfg command

line option, 38
ndeftool.py-make-wificfg command

line option, 37
-keep-message-flags

ndeftool.py-split command line
option, 39

-key network-key
ndeftool.py-make-wificfg command

line option, 36
-lang STRING

beam.py-send-text command line
option, 42

-len N
tagtool.py-format-tt3 command line

option, 33
-listen-time INT

beam.py command line option, 41

89

nfcpy documentation, Release 0.13.6

llcp-test-client.py command line
option, 57

llcp-test-server.py command line
option, 56

phdc-test-agent.py-p2p command
line option, 74

phdc-test-manager.py command line
option, 72

snep-test-client.py command line
option, 64

snep-test-server.py command line
option, 62

-loop, -l
beam.py command line option, 41
llcp-test-client.py command line

option, 57
llcp-test-server.py command line

option, 55
phdc-test-agent.py-p2p command

line option, 74
phdc-test-agent.py-tag command

line option, 76
phdc-test-manager.py command line

option, 72
snep-test-client.py command line

option, 63
snep-test-server.py command line

option, 62
tagtool.py command line option, 30

-lto INT
beam.py command line option, 41
llcp-test-client.py command line

option, 57
llcp-test-server.py command line

option, 56
phdc-test-agent.py-p2p command

line option, 74
phdc-test-manager.py command line

option, 72
snep-test-client.py command line

option, 63
snep-test-server.py command line

option, 62
-mac mac-address

ndeftool.py-make-wificfg command
line option, 37

-magic BYTE
tagtool.py-format-tt1 command line

option, 32
-max N

tagtool.py-format-tt3 command line
option, 32

-miu INT
beam.py command line option, 41

llcp-test-client.py command line
option, 57

llcp-test-server.py command line
option, 56

phdc-test-agent.py-p2p command
line option, 74

phdc-test-manager.py command line
option, 72

snep-test-client.py command line
option, 63

snep-test-server.py command line
option, 62

-mixed-mode
ndeftool.py-make-wificfg command

line option, 37
-mode {t,i}

beam.py command line option, 41
llcp-test-client.py command line

option, 57
llcp-test-server.py command line

option, 56
phdc-test-agent.py-p2p command

line option, 74
phdc-test-manager.py command line

option, 72
snep-test-client.py command line

option, 63
snep-test-server.py command line

option, 62
-nbr N

tagtool.py-format-tt3 command line
option, 32

-nbw N
tagtool.py-format-tt3 command line

option, 32
-no-aggregation

beam.py command line option, 41
llcp-test-client.py command line

option, 57
llcp-test-server.py command line

option, 56
phdc-test-agent.py-p2p command

line option, 74
phdc-test-manager.py command line

option, 72
snep-test-client.py command line

option, 64
snep-test-server.py command line

option, 62
-nolog-symm

beam.py command line option, 41
llcp-test-client.py command line

option, 57

90 Index

nfcpy documentation, Release 0.13.6

llcp-test-server.py command line
option, 56

phdc-test-agent.py-p2p command
line option, 74

phdc-test-agent.py-tag command
line option, 76

phdc-test-manager.py command line
option, 73

snep-test-client.py command line
option, 64

snep-test-server.py command line
option, 63

tagtool.py command line option, 30
-pmm HEX

tagtool.py-format command line
option, 34

-quirks
handover-test-client.py command

line option, 69
handover-test-server.py command

line option, 67
-recv-buf INT

handover-test-client.py command
line option, 69

handover-test-server.py command
line option, 67

-recv-miu INT
handover-test-client.py command

line option, 69
handover-test-server.py command

line option, 67
-relax

handover-test-client.py command
line option, 69

-rfu N
tagtool.py-format-tt3 command line

option, 33
-rw N

tagtool.py-format-tt3 command line
option, 33

-rwa BYTE
tagtool.py-format-tt1 command line

option, 32
-select NUM

handover-test-server.py command
line option, 67

-select STRATEGY
beam.py-send-ndef command line

option, 43
-shareable

ndeftool.py-make-wificfg command
line option, 37

-skip-local

handover-test-server.py command
line option, 67

-sys HEX, -sc HEX
tagtool.py-format command line

option, 34
-technology {A,B,F}

phdc-test-manager.py command line
option, 73

tagtool.py command line option, 30
-timeit

beam.py-send command line option, 42
-tms BYTE

tagtool.py-format-tt1 command line
option, 32

-unreadable
tagtool.py-protect command line

option, 33
-ver x.y

tagtool.py-format-tt1 command line
option, 32

tagtool.py-format-tt3 command line
option, 32

-version x.y
tagtool.py-load command line

option, 31
-wait

phdc-test-manager.py command line
option, 73

tagtool.py command line option, 30
-wf N

tagtool.py-format-tt3 command line
option, 33

-wipe BYTE
tagtool.py-load command line

option, 32
-T, -test-all

llcp-test-client.py command line
option, 57

phdc-test-agent.py-p2p command
line option, 74

phdc-test-agent.py-tag command
line option, 76

snep-test-client.py command line
option, 63

-a actionstring
ndeftool.py-make-smartposter

command line option, 36
-c class-of-device

ndeftool.py-make-btcfg command
line option, 38

-d
command line option, 35

-d MODULE
beam.py command line option, 41

Index 91

nfcpy documentation, Release 0.13.6

llcp-test-client.py command line
option, 57

llcp-test-server.py command line
option, 56

phdc-test-agent.py-p2p command
line option, 74

phdc-test-agent.py-tag command
line option, 76

phdc-test-manager.py command line
option, 73

snep-test-client.py command line
option, 64

snep-test-server.py command line
option, 63

tagtool.py command line option, 30
-d, -debug

command line option, 45
-f LOGFILE

beam.py command line option, 41
llcp-test-client.py command line

option, 57
llcp-test-server.py command line

option, 56
phdc-test-agent.py-p2p command

line option, 74
phdc-test-agent.py-tag command

line option, 76
phdc-test-manager.py command line

option, 73
snep-test-client.py command line

option, 64
snep-test-server.py command line

option, 63
tagtool.py command line option, 30

-h, -help
command line option, 45

-i iconfile
ndeftool.py-make-smartposter

command line option, 36
-i number

command line option, 45
-i password-id

ndeftool.py-make-wifipwd command
line option, 37

-k, -keep
tagtool.py-emulate command line

option, 34
-l, -loop

tagtool.py-emulate command line
option, 34

-n STRING
beam.py-send-file command line

option, 42
-n name-of-device

ndeftool.py-make-btcfg command
line option, 38

-n record-name
ndeftool.py-pack command line

option, 39
-o FILE

tagtool.py-dump command line
option, 31

-o output-file
ndeftool.py-cat command line

option, 39
ndeftool.py-make-btcfg command

line option, 38
ndeftool.py-make-smartposter

command line option, 36
ndeftool.py-make-wificfg command

line option, 37
ndeftool.py-make-wifipwd command

line option, 37
ndeftool.py-pack command line

option, 39
-p FILE

tagtool.py-emulate command line
option, 34

-p PASSWORD
tagtool.py command line option, 30
tagtool.py-protect command line

option, 33
-p device-password

ndeftool.py-make-wifipwd command
line option, 37

-q
beam.py command line option, 41
llcp-test-client.py command line

option, 57
llcp-test-server.py command line

option, 56
phdc-test-agent.py-p2p command

line option, 74
phdc-test-agent.py-tag command

line option, 76
phdc-test-manager.py command line

option, 73
snep-test-client.py command line

option, 64
snep-test-server.py command line

option, 62
tagtool.py command line option, 30

-r, -repeat
command line option, 45

-s SIZE
tagtool.py-emulate command line

option, 34
-s service-class

92 Index

nfcpy documentation, Release 0.13.6

ndeftool.py-make-btcfg command
line option, 38

-t N, -test N
handover-test-client.py command

line option, 68
llcp-test-client.py command line

option, 57
phdc-test-agent.py-p2p command

line option, 74
phdc-test-agent.py-tag command

line option, 76
snep-test-client.py command line

option, 63
-t STRING

beam.py-send-file command line
option, 42

-t record-type
ndeftool.py-pack command line

option, 39
-t seconds

command line option, 45
-t titlespec

ndeftool.py-make-smartposter
command line option, 36

-v
command line option, 35
tagtool.py-show command line

option, 31
-v, -verbose

command line option, 45
-w seconds

command line option, 45

B
beam.py command line option

-device PATH, 41
-listen-time INT, 41
-loop, -l, 41
-lto INT, 41
-miu INT, 41
-mode {t,i}, 41
-no-aggregation, 41
-nolog-symm, 41
-d MODULE, 41
-f LOGFILE, 41
-q, 41

beam.py-recv-file command line option
FILE, 43

beam.py-recv-send command line option
TRANSLATIONS, 44

beam.py-send command line option
-timeit, 42

beam.py-send-file command line option
-n STRING, 42

-t STRING, 42
FILE, 42

beam.py-send-link command line option
TITLE, 42
URI, 42

beam.py-send-ndef command line option
-select STRATEGY, 43
FILE, 43

beam.py-send-text command line option
-lang STRING, 42
TEXT, 42

C
command line option

-dep params, 45
-device path, 45
-d, 35
-d, -debug, 45
-h, -help, 45
-i number, 45
-r, -repeat, 45
-t seconds, 45
-v, 35
-v, -verbose, 45
-w seconds, 45

F
FILE

beam.py-recv-file command line
option, 43

beam.py-send-file command line
option, 42

beam.py-send-ndef command line
option, 43

tagtool.py-emulate command line
option, 34

tagtool.py-load command line
option, 31

H
handover-test-client.py command line

option
-quirks, 69
-recv-buf INT, 69
-recv-miu INT, 69
-relax, 69
-t N, -test N, 68

handover-test-server.py command line
option

-delay INT, 67
-quirks, 67
-recv-buf INT, 67
-recv-miu INT, 67
-select NUM, 67

Index 93

nfcpy documentation, Release 0.13.6

-skip-local, 67

L
llcp-test-client.py command line

option
-cl-echo SAP, 57
-co-echo SAP, 57
-device PATH, 57
-listen-time INT, 57
-loop, -l, 57
-lto INT, 57
-miu INT, 57
-mode {t,i}, 57
-no-aggregation, 57
-nolog-symm, 57
-T, -test-all, 57
-d MODULE, 57
-f LOGFILE, 57
-q, 57
-t N, -test N, 57

llcp-test-server.py command line
option

-device PATH, 56
-listen-time INT, 56
-loop, -l, 55
-lto INT, 56
-miu INT, 56
-mode {t,i}, 56
-no-aggregation, 56
-nolog-symm, 56
-d MODULE, 56
-f LOGFILE, 56
-q, 56

N
ndeftool.py-cat command line option

-o output-file, 39
ndeftool.py-make-btcfg command line

option
-activating, 38
-active, 38
-hs, 38
-inactive, 38
-c class-of-device, 38
-n name-of-device, 38
-o output-file, 38
-s service-class, 38

ndeftool.py-make-smartposter command
line option

-a actionstring, 36
-i iconfile, 36
-o output-file, 36
-t titlespec, 36

ndeftool.py-make-wificfg command line
option

-activating, 37
-active, 37
-hs, 37
-inactive, 37
-key network-key, 36
-mac mac-address, 37
-mixed-mode, 37
-shareable, 37
-o output-file, 37

ndeftool.py-make-wifipwd command line
option

-i password-id, 37
-o output-file, 37
-p device-password, 37

ndeftool.py-pack command line option
-n record-name, 39
-o output-file, 39
-t record-type, 39

ndeftool.py-split command line option
-keep-message-flags, 39

nfc.ContactlessFrontend (built-in class), 83

P
phdc-test-agent.py-p2p command line

option
-device PATH, 74
-listen-time INT, 74
-loop, -l, 74
-lto INT, 74
-miu INT, 74
-mode {t,i}, 74
-no-aggregation, 74
-nolog-symm, 74
-T, -test-all, 74
-d MODULE, 74
-f LOGFILE, 74
-q, 74
-t N, -test N, 74

phdc-test-agent.py-tag command line
option

-device PATH, 76
-loop, -l, 76
-nolog-symm, 76
-T, -test-all, 76
-d MODULE, 76
-f LOGFILE, 76
-q, 76
-t N, -test N, 76

phdc-test-manager.py command line
option

-device PATH, 73
-listen-time INT, 72

94 Index

nfcpy documentation, Release 0.13.6

-loop, -l, 72
-lto INT, 72
-miu INT, 72
-mode {t,i}, 72
-no-aggregation, 72
-nolog-symm, 73
-technology {A,B,F}, 73
-wait, 73
-d MODULE, 73
-f LOGFILE, 73
-q, 73

R
RFC

RFC 2046, 16
RFC 2141, 16
RFC 3986, 16

S
snep-test-client.py command line

option
-device PATH, 64
-listen-time INT, 64
-loop, -l, 63
-lto INT, 63
-miu INT, 63
-mode {t,i}, 63
-no-aggregation, 64
-nolog-symm, 64
-T, -test-all, 63
-d MODULE, 64
-f LOGFILE, 64
-q, 64
-t N, -test N, 63

snep-test-server.py command line
option

-device PATH, 63
-listen-time INT, 62
-loop, -l, 62
-lto INT, 62
-miu INT, 62
-mode {t,i}, 62
-no-aggregation, 62
-nolog-symm, 63
-d MODULE, 63
-f LOGFILE, 63
-q, 62

T
tagtool.py command line option

-device PATH, 30
-loop, -l, 30
-nolog-symm, 30
-technology {A,B,F}, 30

-wait, 30
-d MODULE, 30
-f LOGFILE, 30
-p PASSWORD, 30
-q, 30

tagtool.py-dump command line option
-o FILE, 31

tagtool.py-emulate command line option
-k, -keep, 34
-l, -loop, 34
-p FILE, 34
-s SIZE, 34
FILE, 34

tagtool.py-format command line option
-bitrate {212,424}, 34
-idm HEX, 34
-pmm HEX, 34
-sys HEX, -sc HEX, 34

tagtool.py-format-tt1 command line
option

-magic BYTE, 32
-rwa BYTE, 32
-tms BYTE, 32
-ver x.y, 32

tagtool.py-format-tt3 command line
option

-crc N, 33
-len N, 33
-max N, 32
-nbr N, 32
-nbw N, 32
-rfu N, 33
-rw N, 33
-ver x.y, 32
-wf N, 33

tagtool.py-load command line option
-version x.y, 31
-wipe BYTE, 32
FILE, 31

tagtool.py-protect command line option
-from BLOCK, 33
-unreadable, 33
-p PASSWORD, 33

tagtool.py-show command line option
-v, 31

TEXT
beam.py-send-text command line

option, 42
TITLE

beam.py-send-link command line
option, 42

TRANSLATIONS
beam.py-recv-send command line

option, 44

Index 95

nfcpy documentation, Release 0.13.6

U
URI

beam.py-send-link command line
option, 42

96 Index

	Overview
	Requirements
	Supported Devices
	Implementation Status
	References

	Getting started
	Installation
	Open a local device
	Read and write tags
	Emulate a card
	Work with a peer

	NFC Data Exchange Format
	Parsing NDEF
	Creating NDEF
	Specific Records

	Logical Link Control Protocol
	Simple NDEF Exchange Protocol
	Default Server
	Using SNEP Put
	Private Servers

	Example Programs
	tagtool.py
	ndeftool.py
	beam.py
	sense.py
	listen.py
	rfstate.py

	Interoperability Tests
	Logical Link Control Protocol
	Simple NDEF Exchange Protocol
	Connection Handover
	Personal Health Device Communication
	Generate Test Tags

	Module Reference
	nfc
	nfc.clf
	nfc.tag
	nfc.ndef
	nfc.llcp
	nfc.snep
	nfc.handover

	Index

