nfcpy documentation
Release 1.0.4

Stephen Tiedemann

March 10, 2022

Contents

Overview

1.1 Requirements
1.2 Supported Devices
1.3 Implementation Status
1.4 References
Getting started

2.1 Installation
2.2 Openalocal device
2.3 Read and write tags
24 Emulateacard
25 Workwithapeer

Logical Link Control Protocol

Simple NDEF Exchange Protocol

4.1 Default Server
42 Using SNEPPut
4.3 Private Servers

Example Programs

5.1 tagtoolpy
52 beampy
5.3 sensepy ... oe.o....
54 listenpy
5.5 rfstatepy

Interoperability Tests
6.1 Logical Link Control Protocol

6.2 Simple NDEF Exchange Protocol e
6.3 Connection Handover e
6.4 Personal Health Device Communication v v v v v v vt e et e e et e e
6.5 Generate Test Tags o o L o e e e e e
Module Reference

T.1 nfc o e e e e
T2 nfcclf . . o e e e e e

N N W W W

15

19
20
21
21

25
25
31
35
36
43

47
47
54
59
64
70

T3 nfectag . .o e e e e e e e e e e 114
T4 nfcllep . . . e e e e e e e e e 134
TS5 nfeSnep . . . oo e e e e e e e e 136
7.6 nfchandover L e e e e e e e 137
Python Module Index 139
Index 141

nfcpy documentation, Release 1.0.4

This documentation covers the ‘1.0.4 version of nfcpy. There are also other versions.

The nfcpy module implements NFC Forum specifications for wireless short-range data exchange with NFC devices
and tags. It is written in Python and aims to provide an easy-to-use yet powerful framework for applications integrating
NFC. The source code is licensed under the EUPL and hosted at GitHub. The latest release version can be installed
from PyPl withpip install -U nfcpy.

To send a web link to a smartphone:

import nfc
import ndef
from threading import Thread

def beam(llc):
snep_client = nfc.snep.SnepClient (11lc)
snep_client.put_records ([ndef.UriRecord('http://nfcpy.org')])

def connected(llc):
Thread (target=beam, args=(llc,)) .start ()
return True

with nfc.ContactlessFrontend('usb') as clf:
clf.connect (llcp={'on-connect': connected})

There are also a number of Example Programs that can be used from the command line:

$ examples/beam.py send link http://nfcpy.org

Contents 1

https://readthedocs.org/projects/nfcpy/versions
http://nfc-forum.org/
https://www.python.org
http://ec.europa.eu/idabc/eupl
https://github.com/nfcpy/nfcpy
https://pypi.python.org/pypi/nfcpy

nfcpy documentation, Release 1.0.4

2 Contents

CHAPTER 1

Overview

1.1 Requirements

e Python version 2.7 or 3.5 or newer
* Python usbl module to access USB devices through libusb
* Python serial module to access serial (incl. FTDI) devices

 Python docopt module for some of the example programs

1.2 Supported Devices

The contactless devices known to be working with nfcpy are listed below with the device path column showing the full
path argument for the nfc.clf.ContactlessFrontend.open () method or the ——device option that most
example programs support. The testbed column shows the devices that are regularly tested with nfcpy.

https://www.python.org
https://github.com/vpelletier/python-libusb1
http://libusb.info
http://pythonhosted.org/pyserial/
https://github.com/docopt/docopt

nfcpy documentation, Release 1.0.4

Manufacturer | Product NFC Chip | Device Path Testbed | Notes
Sony RC-S330 RC-S956 usb:054c:02el Yes I
Sony RC-S360 RC-S956 usb:054c¢:02el Yes '
Sony RC-S370 RC-S956 usb:054c:02el No T
Sony RC-S380/S | Port100 usb:054c¢:06cl Yes z
Sony RC-S380/P | Port100 usb:054c¢:06¢3 No 2
Sony Board PN531v4.2 | usb:054c:0193 Yes 3
Philips/NXP Board PN531v4.2 | usb:04cc:0531 Yes 3
Identive SCL3710 PN531 usb:04cc:0531 No 4
ACS ACR122U | PN532v1.4 | usb:072f:2200 Yes >
ACS ACRI122U | PN532v1.6 | usb:072f:2200 Yes 3
Stollmann Reader PN532v1.4 | tty:USBO:pn532 | Yes g
Adafruit Board PN532v1.6 | tty:AMAO:pn532 | Yes !
Identive SCL3711 PN533v2.7 | usb:04e6:5591 Yes g
Identive SCL3712 PN533 usb:04e6:5593 No 7
SensorID StickID PN533v2.7 | usb:04cc:2533 Yes 10
Arygon ADRA PN531v4.2 | tty:USBO:arygon | Yes

1.2.1 Functional Support

The following table summarizes the functional support level of the supported devices. Identical devices are aggregated
under one of the product names. Only testbed devices are covered. In the table an x means that the function is
supported by hardware and software while an o means that the hardware would support but but the software not
yet implemented. More information about individual driver / hardware restrictions can be found in the nfc.cl1f
documentation.

Tag Read/Write Tag Emulation Peer2Peer

1 2 3 4A | 4B | 1 2 3 4A | 4B | | T ac
RC-S380 X X X X X 0 X o X X
RC-S956 X X X X o o X X
PN533 X X X X X 0 X 0 X X X
PN532 X X X X X 0 X 0 X X X
PN531 X X X 0 o X X X
ACR122U X X X X X

! The Sony RC-S330, RC-S360, and RC-S370 are in fact identical devicess, the difference is only in size and thus antenna.

2 The only known difference between RC-S380/S and RC-S380/P is that the RC-380/S has the CE and FCC certification marks for sales in
Europe and US.

3 This is a reference board that was once designed by Philips and Sony and has a hardware switch to select either the Philips or Sony USB
Vendor/Product ID. The chip can only handle Type A and Type F technology.

4 This device is supported as a standard PN531. It has been reported to work as expected but is not part of regular testing.

5 While the ACR122U internally uses a PN532 contactless chip the functionality provided by a PN532 can not be fully used due to an additional
controller that implements a USB-CCID interface (for PC/SC) towards the host. It is possible using PCSC_Escape commands to unleash some
functionality but this this is not equivalent to directly accessing a PN532. It is not recommended to buy this device for use with nfcpy.

6 The path shown is for Ubuntu Linux in case the reader is the first UART/USB bridge found by the OS. Also on Windows OS the path is slightly
different (com: COM1 : pn532).

7 This is sold by Adafruit as “PN532 NFC/RFID Controller Breakout Board” and can directly be connected to a serial port of, for example, a
Raspberry Pi (the device path shown is for the Raspberry Pi’s UART, when using a USB/UART bridge it would be usb : USB0 : pn532). Note that
the serial link speed is only 115200 baud when connected at /dev/tty AMAO while with a USB/UART bridge it may be up to 921600 baud (on Linux
the driver tries to figure this out).

8 The SCL3711 has a relatively small antenna that winds around the circuitry and may be the reason for less superior performance when operating
as a target in passive communication mode (where the external field must be modulated).

9 The SCL3712 has been reported to work but is not available for regular testing.

10 The SensorID USB stick is a native PN533. It has no EEPROM attached and thus uses the default NXP Vendor/Product IDs from the ROM
code. Absence of an EEPROM also means that the firmware uses default RF settings.

4 Chapter 1. Overview

nfcpy documentation, Release 1.0.4

1.2.2 General Notes

» Testbed devices are verified to work with the latest stable nfcpy release. Test platforms are Ubuntu Linux
(usually the latest version), Raspbian (with Raspberry Pi 2 Model B), and Windows (currently a Windows 7
virtual machine). No tests are done for MAC OS X because of lack of hardware.

» All device architectures with a PN532 or PN533 suffer from a firmware bug concerning Type 1 Tags with
dynamic memory layout (e.g. the Topaz 512). With nfcpy version 0.10 this restriction could be removed by
directly adressing the Contactless Interface Unit (CIU) within the chip.

* The ACR122U is not supported as P2P Target because the listen time can not be set to less than 5 seconds. It
can not be overstated that the ACR122U is not a good choice for nfcpy.

1.3 Implementation Status

1.4 References

* NFC Forum Specifications: http://nfc-forum.org/our-work/specifications-and-application-documents/

Specification Status

TS NFC Digital Protocol 1.1 implemented
TS NFC Activity 1.1 implemented
TS Type 1 Tag Operation 1.2 implemented
TS Type 2 Tag Operation 1.2 implemented
TS Type 3 Tag Operation 1.2 implemented
TS Type 4 Tag Operation 3.0 implemented
TS NFC Data Exchange Format 1.0 except chunking
TS NFC Record Type Definition 1.0 implemented
TS Text Record Type 1.0 implemented
TS URI Record Type 1.0 implemented
TS Smart Poster Record Type 1.0 implemented
TS Signature Record Type not implemented
TS Logical Link Control Protocol 1.3 implemented
TS Simple NDEF Exchange Protocol 1.0 | implemented
TS Connection Handover 1.2 implemented
TS Personal Health Communication 1.0 implemented
AD Bluetooth Secure Simple Pairing implemented

1.3. Implementation Status

http://nfc-forum.org/our-work/specifications-and-application-documents/

nfcpy documentation, Release 1.0.4

6 Chapter 1. Overview

CHAPTER 2

Getting started

2.1 Installation

NFCPy requires the library libusb for generic access to USB devices.
Install libusb (Linux)

Linux distributions usually have this installed, otherwise it should be available through the standard package manager
(beware not to choose the old version 0 . x).

Install libusb (Windows)

Windows users will have to manually install WinUSB and libusb. Microsoft provides instructions to install WinUSB
but a much simpler approach is to use Zadig (a driver installation helper application).

* Download Zadig
* Connect your NFC device
* Run the downloaded executable
* Click Options -> List All Devices
¢ Select your NFC reading/writing device from the list
* Select the WinUSB driver from the other drop down and install it
Then, install libusb:
¢ Download libusb (Downloads -> Latest Windows Binaries).
» Unpack the 7z archive (you may use 7zip).
* For 32-bit Windows:
— Copy MS32\d11\libusb-1.0.d1l1toC:\Windows\System32.
¢ For 64-bit Windows:
— Copy MS64\d11\libusb-1.0.dl1ltoC:\Windows\System32.

http://libusb.info/
https://msdn.microsoft.com/en-us/library/ff540196.aspx
http://libusb.info/
https://msdn.microsoft.com/en-us/library/ff540196.aspx
http://zadig.akeo.ie/
http://zadig.akeo.ie/
http://libusb.info/
https://www.7-zip.org/download.html

nfcpy documentation, Release 1.0.4

— Copy MS32\d11\libusb-1.0.d11 to C:\Windows\SysWOW64.
Install Python and nfcpy
Download and install Python (2.7 or 3.5 or later).

Note: Python may already be installed on your system if you are a Linux user.

Once Python is installed use pip to install the latest stable version of nfcpy. This will also install the required 1ibusbl
and pyserial Python modules.

$ pip install -U nfcpy

Windows users will want to ensure they have configured their environment’s PATH correctly, otherwise they will not
be able to access pip on the command line. It is usually located at C: \Python27\Scripts\pip.exe so they
must ensure C: \Python27\Scripts)\ is on their PATH.)

Verify installation

Check if everything installed correctly and that nfcpy is able to find your contactless reader.

$ python -m nfc

If all goes well the output should tell that your your reader was found, below is an example of how it may look with
an SCL3711:

This is the latest version of nfcpy run in Python 2.7.12
on Linux-4.4.0-47-generic-x86_64-with-Ubuntu-16.04-xenial
I'm now searching your system for contactless devices

«% found SCM Micro SCL3711-NFC&RW PN533v2.7 at usb:002:024
I'm not trying serial devices because you haven't told me
—-— add the option '--search-tty' to have me looking

—— but beware that this may break existing connections

Common problems on Linux (access rights or other drivers claiming the device) should be reported with a possible
solution:

This is the latest version of nfcpy run in Python 2.7.12

on Linux-4.4.0-47-generic-x86_64-with-Ubuntu-16.04-xenial

I'm now searching your system for contactless devices

+% found usb:04e6:5591 at usb:002:025 but access is denied

—— the device is owned by 'root' but you are 'stephen'

—— also members of the 'root' group would be permitted

—-— you could use 'sudo' but this is not recommended

—-— it's better to add the device to the 'plugdev' group
sudo sh —-c 'echo SUBSYSTEM==\"usb\", ACTION==\"add\", ATTRS{idVendor}==\"04e6\",

—ATTRS{idProduct }==\"5591\", GROUP=\"plugdev\" >> /etc/udev/rules.d/nfcdev.rules'
sudo udevadm control -R # then re-attach device

I'm not trying serial devices because you haven't told me

—-— add the option '--search-tty' to have me looking

—-— but beware that this may break other serial devs

Sorry, but I couldn't find any contactless device

8 Chapter 2. Getting started

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/

nfcpy documentation, Release 1.0.4

2.2 Open a local device

Any data exchange with a remote NFC device needs a contactless frontend attached and opened for communication.
Most commercial devices (also called NFC Reader) are physically attached through USB and either provide a native
USB interface or a virtual serial port.

The nfc.ContactlessFrontend manages all communication with a local device. The open method tries to
find and open a device and returns True for success. The string argument determines the device with a sequence of
components separated by colon. The first component determines where the device is attached (usb, tty, or udp) and
what the further components may be. This is best explained by example.

Suppose a FeliCa S330 Reader is attached to a Linux computer on USB bus number 3 and got device number 9 (note
that device numbers always increment when a device is connected):

$ lsusb

Bus 003 Device 009: ID 054c:02el Sony Corp. FeliCa S330 [PaSoRi]

>>> import nfc

>>> clf = nfc.ContactlessFrontend()

>>> assert clf.open('usb:003:009'") is True # open device 9 on bus 3

>>> assert clf.open('usb:054c:02el') is True # open first PaSoRi 330

>>> assert clf.open('usb:003"') is True # open first Reader on bus 3
>>> assert clf.open('usb:054c') is True # open first Sony Reader

>>> assert clf.open('usb') is True # open first USB Reader

>>> clf.close () # previous open calls implicitly closed the device

Some devices, especially for embedded projects, have a UART interface that may be connected either directly or
through a USB UART adapter. Below is an example of a Raspberry Pi 3 which has two UART ports (ttyAMADO,
ttyS0) and one reader is connected with a USB UART adapter (ttyUSBO). On a Raspberry Pi 3 the UART linked from
/dev/seriall is available on the GPIO header (the other one is used for Bluetooth connectivity). On a Raspberry Pi 2 it
is always ttyAMAO.

pi@raspberrypi ~ $ 1ls -1 /dev/tty[ASU]* /dev/serial?

lrwxrwxrwx 1 root root 5 Dez 21 18:11 /dev/serialO -> ttyS0
lrwxrwxrwx 1 root root 7 Dez 21 18:11 /dev/seriall —-> ttyAMAO
crw-rw———- 1 root dialout 204, 64 Dez 21 18:11 /dev/ttyAMAO

crw-rw——-— 1 root dialout 4, 64 Dez 21 18:11 /dev/ttySO

crw-rw———-— 1 root dialout 188, 0 Feb 24 12:17 /dev/ttyUSBO

>>> import nfc
>>> clf = nfc.ContactlessFrontend()

>>> assert clf.open('tty:USBO:arygon') is True # open /dev/ttyUSBO with arygon driver
>>> assert clf.open('tty:USBO:pn532") is True # open /dev/ttyUSB0O with pn532 driver
>>> assert clf.open('tty:AMAO') is True # try different drivers on /dev/
 ttyAMAQ

>>> assert clf.open('tty') is True # try all serial ports and drivers

>>> clf.close() # previous open calls implicitly closed the device

A special kind of device bus that does not require any physical hardware is provided for testing and application
prototyping. It works by sending NFC communication frames across a UDP/IP connection and can be used to connect
two processes running an nfcpy application either locally or remote.

In the following example the device path is supplied as an init argument. This would raise an exceptions.
IOError with errno.ENODEV if it fails to open. The example also demonstrates the use of a with statement
for automatic close when leaving the context.

2.2. Open a local device 9

https://docs.python.org/3/library/errno.html#errno.ENODEV
https://docs.python.org/3/reference/compound_stmts.html#with

nfcpy documentation, Release 1.0.4

>>> import nfc
>>> with nfc.ContactlessFrontend('udp') as clf:
print (clf)

Linux IP-Stack on udp:localhost:54321

2.3 Read and write tags

NFC Tag Devices are tiny electronics devices with a comparatively large (some square centimeters) antenna that serves
as both an inductive power receiver and for communication. The energy is provided by the NFC Reader Device for as
long as it wishes to communicate with the Tag.

Most Tags are embedded in plastics or paper and can store data in persistent memory. NFC Tags as defined by the
NFC Forum have standardized memory format and command set to store NFC Data Exchange Format (NDEF) records.
Most commercial NFC Tags also provide vendor-specific commands for special applications, some of those can be
used with nfcpy. A rather new class of NFC Interface Tags is targeted towards providing NFC communication for
embedded devices where the information exchange is through NFC with the microcontroller of the embedded device.

Tip: It is quite easy to make an NFC field detector. Just a few turns of copper wire around three fingers and the ends
soldered to an LED will do the job. Here’s a video.

NFC Tags are simple slave devices that wait unconditionally for any reader command to respond. This makes it easy
to interact with them from within a Python interpreter session using the local contactless frontend.

>>> import nfc
>>> clf = nfc.ContactlessFrontend('usb')

The c1f.sense () method can now be used to search for a proximity target with arguments set for the desired
communication technologies. The example shows the result of a Type F card response for which the nfc.tag.
activate () function then returns a Type3Tag instance.

>>> from nfc.clf import RemoteTarget

>>> target = clf.sense(RemoteTarget ('106A"), RemoteTarget ('106B"), RemoteTarget ('212F
"))

>>> print (target)

212F sensf_res=0101010701260CCAO020F0D23042F7783FF12FC

>>> tag = nfc.tag.activate(clf, target)

>>> print (tag)

Type3Tag 'FeliCa Standard (RC-S960)' ID=01010701260CCA02 PMM=0F0D23042F7783FF SYS=12FC

The same Type3Tag instance can also be acquired with the c1f. connect () method. This is the generally pre-
ferred way to discover and activate contactless targets of any supported type. When configured with the rdwr dictionary
argument the c1f. connect () method will use Reader/Writer mode to discover NFC Tags. When a Tag is found
and activated, the on—connect callback function returning False means that the tag presence loop shall not be run
but the nfc. tag. Tag object returned immediately. A more useful callback function could do something with the
tag and return True for requesting a presence loop that makes c17. connect () return only after the tag is gone.

>>> tag = clf.connect (rdwr={'on-connect': lambda tag: False})
>>> print (taqg)
Type3Tag 'FeliCa Standard (RC-S960)' ID=01010701260CCAQ02 PMM=0FO0D23042F7783FF SYS=12FC

An NFC Forum Tag can store NFC Data Exchange Format (NDEF) Records in a specifically formatted memory
region. NDEF data is found automatically and wrapped into an NDEF object accessible through the tag.ndef

10 Chapter 2. Getting started

https://www.youtube.com/watch?v=dTv4U5fotM0

nfcpy documentation, Release 1.0.4

attribute. When NDEF data is not present the attribute is simply None.

>>> assert tag.ndef is not None
>>> for record in tag.ndef.records:
print (record)

NDEF Uri Record ID '' Resource 'http://nfcpy.org'

The tag.ndef. records attribute contains a list of NDEF Records decoded from tag.ndef.octets with the
ndeflib package. Each record has common and type-specific methods and attributes for content access.

>>> record = tag.ndef.records[0]
>>> print (record.type)
urn:nfc:wkt:U

>>> print (record.uri)
http://nfcpy.org

A list of NDEF Records assigned to tag.ndef. records gets encoded and then written to the Tag (internally the
bytes are assigned to tag.ndef.octet s to trigger the update).

>>> import ndef
>>> uri, title = 'http://nfcpy.org', 'nfcpy project’
>>> tag.ndef.records = [ndef.SmartposterRecord(uri, title)]

When NDEF data bytes are written to a Memory Tag then the tag. ndef object matches the stored data. In case
of an Interface Tag this may not be true because the write commands may be handled differently by the device. The
only way to find out is read back the data and compare. This is the logic behind tag. ndef. has_changed, which
should be False for a Memory Tag.

>>> assert tag.ndef.has_changed is False

An NFC Interface Tag may be used to realize a device that presents dynamically changing NDEF data depending on
internal state, for example a sensor device returning the current temperature.

>>> tag = clf.connect (rdwr={'on-connect': lambda tag: False})
>>> print (tag)
Type3Tag 'FeliCa Link (RC-S730) Plug Mode' ID=03FEFFFFFFFFFFFF PMM=00E1000000FFFF00,
—S3YS=12FC
>>> assert tag.ndef is not None and tag.ndef.length > 0
>>> assert tag.ndef.records[0].type == 'urn:nfc:wkt:T'
>>> print ('Temperature 0: '.format (tag.ndef.records[0].text))
Temperature 0: +21.3 C
>>> for count in range(l, 4):
while not tag.ndef.has_changed: time.sleep (1)
print ('Temperature : '.format (count, tag.ndef.records[0].text))

Temperature 1: +21.0 C
Temperature 2: +20.5 C
Temperature 3: +20.1 C

Finally the contactless frontend should be closed.

>>> clf.close ()

Documentation of all available Tag classes as well as NDEF class methods and attributes can be found in the nfc. tag
module reference. For NDEF Record class types, methods and attributes consult the ndeflib documentation.

2.3. Read and write tags 11

http://ndeflib.readthedocs.io/en/stable/
http://ndeflib.readthedocs.io/en/stable/

nfcpy documentation, Release 1.0.4

2.4 Emulate a card

It is possible to emulate a card (NFC Tag) with nfcpy but unfortunately this only works with some NFC devices and is
limited to Type 3 Tag emulation. The RC-S380 fully supports Type 3 Tag emulation. Devices based on PN532, PN533,
or RC-S956 chipset can also be used but an internal frame size limit of 64 byte only allows read/write operations with
up to 3 data blocks.

Below is an example of an NDEF formatted Type 3 Tag. The first 16 byte (first data block) contain the attribute data
by which the reader will learn the NDEF version, the number of data blocks that can be read or written in a single
command, the total capacity and the write permission state. Bytes 11 to 13 contain the current NDEF message length,
initialized to zero. The example is made to specifically open only an RC-S380 contactless frontend (otherwise the
number of blocks that may be read or written should not be more than 3).

import nfc
import struct

ndef_data_area = bytearray (64 * 16)

ndef_data_area[0] = 0x10 # NDEF mapping version '1.0'

ndef_data_areal[l] = 12 # Number of blocks that may be read at once
ndef_data_areal[2] = 8 # Number of blocks that may be written at once
ndef_data_areal[4] = 63 # Number of blocks available for NDEF data
ndef_data_area[10] = 1 # NDEF read and write operations are allowed
ndef_data_area[l4:16] = struct.pack('>H', sum(ndef_data_areal[0:14])) # Checksum

def ndef_read(block_number, rb, re):
if block_number < len (ndef_data_area) / 16:
first, last = block_number*16, (block_number+1l)*16
block_data = ndef_data_area[first:last]
return block_data

def ndef_write (block_number, block_data, wb, we):
global ndef_data_area
if block_number < len(ndef_data_area) / 16:
first, last = block_numberx16, (block_number+1l)*16
ndef_data_area[first:last] = block_data
return True

def on_startup(target):

idm, pmm, sys = 'O3FEFFE(011223344', 'OlEOOOOOOOFFFFO00', '12FC'
target.sensf_res = bytearray.fromhex('01l"' + idm + pmm + sys)
target.brty = "212F"

return target

def on_connect (tag) :
print ("tag activated")
tag.add_service (0x0009, ndef_read, ndef_write)
tag.add_service (0x000B, ndef_read, lambda: False)
return True

with nfc.ContactlessFrontend ('usb:054c:06cl') as clf:
while clf.connect (card={'on-startup': on_startup, 'on-connect': on_connect}):
print ("tag released")

This is a fully functional NFC Forum Type 3 Tag. With a separate reader or Android apps such as NXP Tag Info and
NXP Tag Writer, NDEF data can now be written into the ndef_data_area and read back until the loop is terminated
with Control-C.

12 Chapter 2. Getting started

https://play.google.com/store/apps/details?id=com.nxp.taginfolite
https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter

nfcpy documentation, Release 1.0.4

2.5 Work with a peer

The best part of NFC comes when the limitations of a single master controlling a humble servant are overcome. This
is achieved by the NFC Forum Logical Link Control Protocol (LLCP), which allows multiplexed communications
between two NFC Forum Devices with either peer able to send protocol data units at any time and no restriction to a
single application run in one direction.

An LLCP link between two NFC devices is requested with the llecp argument to c1 . connect ().

>>> import nfc

>>> clf = ContactlessFrontend('usb'")

>>> clf.connect (1llcp={}) # now touch a phone
True

When the first example got LLCP running there is actually just symmetry packets exchanged back and forth until the
link is broken. We have to use callback functions to add some useful stuff.

>>> def on_connect (llc):
print llc; return True

>>> clf.connect (1llcp={'on-connect': connected})

LLC: Local (MIU=128, LTO=100ms) Remote (MIU=1024, LTO=500ms)
True

The on_connect function receives a single argument lle, which is the LogicalLinkController instance coor-
dinates aal data exchange with the remote peer. With this we can add client applications but they must be run in a
separate execution context to have on_connect return fast. Only after on_connect returns, the lle can start running the
symmetry loop (the LLCP heartbeat) with the remote peer and generally receive and dispatch protocol and service
data units.

When using the interactive interpreter it is less convinient to program in the callback functions so we will start a thread
in the callback to execute the llc.run* loop and return with False. This tells ¢1f. connect () to return immediately
with the llc instance).

>>> import threading
>>> def on_connect (llc):
threading.Thread (target=11lc.run) .start (); return False

>>> 1lc = clf.connect (llcp={'on-connect': on_connect})
>>> print 1llc
LLC: Local (MIU=128, LTO=100ms) Remote (MIU=1024, LTO=500ms)

Application code is not supposed to work directly with the llc object but use it to create Socket objects for the actual
communication. Two types of regular sockets can be created with either nfc.1lcp.LOGICAL_DATA_LINK for
a connection-less socket or nfc.11lcp.DATA_LINK_CONNECTION for a connection-mode socket. A connection-
less socket does not guarantee that application data is delivered to the remote application (although nfcpy makes sure
that it’s been delivered to the remote device). A connection-mode socket cares about reliability, unless the other
implementation is buggy data you send is guaranteed to make it to the receiving application - error-free and in order.

What can be done with an Android phone as the peer device is for example to send to its default SNEP Server. SNEP
is the NFC Forum Simple NDEF Exchange Protocol and a default SNEP Server is built into Android under the name
of Android Beam. SNEP messages are exchanged over an LLCP data link connection so we create a connection mode
socket, connect to the server with the service name known from the NFC Forum Assigned Numbers Register and then
send a SNEP PUT request with a web link to open.

2.5. Work with a peer 13

http://members.nfc-forum.org/specs/nfc_forum_assigned_numbers_register

nfcpy documentation, Release 1.0.4

>>> import ndef
>>> socket = nfc.llcp.Socket(llc, nfc.llcp.DATA_LINK_CONNECTION)
>>> socket.connect ('urn:nfc:sn:snep')

>>> records = [ndef.UriRecord("http://nfcpy.org")]
>>> message = b''.join(ndef.message_encoder (records))
>>> socket.send (b"\x10\x02\x00\x00\x00" + chr (len(message)) + message)

>>> socket.recv ()
"\x10\x81\x00\x00\x00\x00"
>>> socket.close()

The phone should now have opened the http://nfcpy.org web page.
The code can be simplified by using the SnepClient from the nfc. snep package.

>>> import nfc.snep

>>> snep = nfc.snep.SnepClient (1llc)

>>> snep.put_records ([ndef.UriRecord ("http://nfcpy.org™)])
True

The put () method is smart enough to temporarily connect to urn:nfc.sn:snep for sending. There are also
methods to open and close the connection explicitely and maybe use a different service name.

Note: The Logical Link Control Protocol tutorial has more information on LLCP in general and how its used with
nfcpy. The nfc. 11cp package documentation contains describes all the API classes and methods that are available.

14 Chapter 2. Getting started

http://nfcpy.org

CHAPTER 3

Logical Link Control Protocol

The Logical Link Control Protocol allows multiplexed communications between two NFC Forum Peer Devices where
either peer can send protocol data units at any time (asynchronous balanced mode). The communication endpoints
are called Service Access Points (SAP) and are addressed by a 6 bit numerical identifier. Protocol data units are
exchanged between exactly two service access points, from a source SAP (SSAP) to a destination SAP (DSAP). The
service access point address space is split into 3 parts: an address between 0 and 15 identifies a well-known service,
an address between 16 and 31 identifies a service that is registered in the local service environment, and addresses
between 32 and 63 are unregistered and normally used as a source address by client applications that send or connect
to peer services.

The interface to realize LLCP client and server applications in nfcpy is implemented by the nfc. 1lcp. Socket
class. A socket is created with a LogicalLinkController instance and the socket type as arguments to the
Socket constructor. The nfc.ContactlessFrontend.connect () method accepts callback functions that
will receive the active LogicalLinkController instance as argument.

import nfc
import nfc.llcp

def client (socket) :
socket.sendto ("message", addr=16)

def connected(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.LOGICAL_DATA_LINK)
Thread (target=client, args=(socket,)) .start ()
return True

clf = nfc.ContactlessFrontend()
clf.connect (llcp={'on-connect': connected})

Although service access points are generally identified by a numerical address, the LLCP service discovery component
allows SAPs to be associated with a globally unique service name and become discoverable by remote applications.
A service name may represent either an NFC Forum well-known or an externally defined service name.

e The format urn:nfc:sn:<servicename> represents a well-known service name, for example the service
name urn:nfc:sn:snep identifies the NFC Forum Simple NDEF Data Exchange (SNEP) default server.

15

nfcpy documentation, Release 1.0.4

e The format urn:nfc:xsn:<domain>:<servicename> represents a service name that is defined by the
domain owner, for example the service name urn:nfc:xsn:nfc-forum.org:snep-validation is
the service name of a special SNEP server used by the NFC Forum during validation of the SNEP secification.

In nfcpy a service name can be registered with Socket . bind () and a service name string as the address parameter.
The allocated service access point address number can then be retrived with get sockname (). A remote service
name can be resolved into a service access point address number with resolve ().

def server (socket) :
message, address = socket.recvfrom()
socket.sendto ("It's me!", address)

def client (socket) :

address = socket.resolve('urn:nfc:xsn:nfcpy.org:test-service')
socket.sendto ("Hi there!", address)

message, address = socket.recvfrom()

print ("SAP said: ".format (address, message))

def startup(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.LOGICAL_DATA_LINK)

socket.bind('urn:nfc:xsn:nfcpy.org:test-service')
print ("server bound to SAP ".format (socket.getsockname ()))
Thread (target=server, args=(socket,)) .start ()

return llc

def connected(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.LOGICAL_DATA_LINK)
Thread (target=client, args=(socket,)) .start ()
return True

clf = nfc.ContactlessFrontend()
clf.connect (llcp={'on-startup': startup, 'on-connect': connected})

Connection-mode sockets must be connected before data can be exchanged. For a server socket this involves calls to
bind (), listen () and accept (), and for a client socket to call resolve () and connect () with the address
returned by resolve () or to simply call connect () with the service name as address (note that resolve ()
becomes more efficient when queries for multiple service names are needed).

def server (socket) :
note that this server only accepts one connection
for multiple connections spawn a thread per accept
while True:
client = socket.accept ()
while True:
message = client.recv ()
print ("Client said: ".format (message))
client.send("It's me!")

def client (socket) :
socket.connect ('urn:nfc:xsn:nfcpy.org:test-service')
socket.send ("Hi there!™)
message = socket.recv ()
print ("Server said: ".format (message))

def startup(llc):
socket = nfc.llcp.Socket (llc, nfc.llcp.DATA_LINK_CONNECTION)
socket .bind('urn:nfc:xsn:nfcpy.org:test-service')
print ("server bound to SAP ".format (socket.getsockname ()))

(continues on next page)

16 Chapter 3. Logical Link Control Protocol

nfcpy documentation, Release 1.0.4

(continued from previous page)

socket.listen ()
Thread(target=server, args=(socket,)) .start()
return llc

def connected(llc):
socket = nfc.llcp.Socket (llc, nfc.llcp.DATA_LINK_CONNECTION)
Thread (target=client, args=(socket,)) .start ()
return True

clf = nfc.ContactlessFrontend()
clf.connect (llcp={'on-startup': startup, 'on-connect': connected})

Data can be send and received with sendto () and recvfrom () on connection-less sockets and send () and
recv () on connection-mode sockets. Send data is guaranteed to be delivered to the remote device when the send
methods return (although not necessarily to the remote service access point - only for a connection-mode socket this
can be safely assumed but note that even then data may not yet have been arrived at the service user). Receiving data
with either recv () or recvirom () blocks until some data has become available or all LLCP communication has
been terminated (if either one peer intentionally closes the LLCP Link or the devices are moved out of communication
range). To implement a communication timeout during normal operation, the po11 () method can be used to wal will
“fix” this bug by adding to the documentationl will “fix” this bug by adding to the documentationit for a ‘recv’ event
with a given timeout.

def client (socket) :
socket.connect ('urn:nfc:xsn:nfcpy.org:test-service')
socket.send ("Hi there!™)
if socket.poll('recv', timeout=1.0):
message = socket.recv ()
print ("Server said: ".format (message))
else:
print ("Server said nothing within 1 second")

Sockets of type nfc.llcp.LOGICAL_DATA_LINK, DATA_LINK_CONNECTION and RAW_ACCESS_POINT
(which should normally not be used) do not provide fragmentation for messages that do not fit into a single protocol
data unit but raise an nfc.llcp.Error exception with errno.EMSGSIZE. An application can learn the maxi-
mum nuber of bytes for sending or receiving by calling get sockopt () with option nfc.llcp.SO_SNDMIU or
nfc.llcp.SO_RCVMIU.

send_miu = socket.getsockopt (nfc.llcp.SO_SNDMIU)
recv_miu = socket.getsockopt (nfc.llcp.SO_RCVMIU)

When opening or accepting a data link connection an application may specify the maximum number of octets to
receive with the nfc.1llcp.SO_RCVMIU option in setsockopt (). The value must be between 128 and 2176,
inclusively. If the RCVMIU is not explicitely set for a data link connection the default value applied by the peer is 128
octets.

On connection-mode sockets options nfc.1lcp.SO_SNDBUF and nfc.1llcp.SO_RCVBUF can be used to learn
the local and remote receive window values established during connection setup. The local receive window can also
be set with set sockopt () before the socket gets connected.

def server(llc):
socket = nfc.llcp.Socket(llc, nfc.llcp.DATA_LINK_CONNECTION)
socket.setsockopt (nfc.1llcp.SO_RCVMIU, 1000)
socket.setsockopt (nfc.llcp.SO_RCVBUF, 2)
socket.bind("urn:nfc:sn:snep")
socket.listen ()

(continues on next page)

17

nfcpy documentation, Release 1.0.4

(continued from previous page)

socket.accept ()

def client (llc):
socket = nfc.llcp.Socket (llc, nfc.llcp.DATA_LINK_CONNECTION)
socket.setsockopt (nfc.llcp.SO_RCVMIU, 1000)
socket.setsockopt (nfc.llcp.SO_RCVBUF, 2)
socket.connect ("urn:nfc:sn:snep")

LLCP data link connections use sliding window flow-control. The receive window set withnfc.11lcp.SO_RCVBUF
dictates the number of connection-oriented information PDUs that the remote side of the data link connection may
have outstanding (sent but not acknowledged) at any time. A connection-mode socket is able to receive and buffer
that number of packets. Whenever the service user (the application) retrieves one or more messages from the socket,
reception of the messages will be acknowledged to the remote SAP.

A common application architecture is that messages are received in a dedicated thread and then added to a message
queue that the application will query for data to process at a later time. Unless the message queue can grow indefinitely
it may happen that the receive thread is unable to add more data to the queue because the application is not consuming
data for some reason. For such situations LLCP provides a mechanism to convey a busy indication to the remote service
user. In nfcpy an application uses setsockopt () with option nfc.1llcp.SO_RCVBSY and value True to set
the busy state or value False to clear the busy state. An application can use get sockopt () with option nfc.
llcp.SO_RCVBSSY to learn it’s own busy state and nfc.llcp.SO_SNDBSY to learn the remote application’s
busy state.

18 Chapter 3. Logical Link Control Protocol

CHAPTER 4

Simple NDEF Exchange Protocol

The NFC Forum Simple NDEF Exchange Protocol (SNEP) allows two NFC devices to exchange NDEF Messages.
It is implemented in many smartphones and typically used to push phonebook contacts or web page URLs to another
phone.

SNEP is a stateless request/response protocol. The client sends a request to the server, the server processes that
request and returns a response. On the protocol level both the request and response have no consequences for further
request/response exchanges. Information units transmitted through SNEP are NDEF messages. The client may use a
SNEP PUT request to send an NDEF message and a SNEP GET request to retrieve an NDEF message. The message
to retrieve with a GET request depends on an NDEF message sent with the GET request but the rules to determine
equivalence are an application layer contract and not specified by SNEP.

NDEF messages can easily be larger than the maximum information unit (MIU) supported by the LLCP data link
connection that a SNEP client establishes with a SNEP server. The SNEP layer handles fragmentation and reassembly
so that an application must not be concerned. To avoid exhaustion of the limited NFC bandwidth if an NDEF mes-
sage would exceed the SNEP receiver’s capabilities, the receiver must acknowledge the first fragment of an NDEF
message that can not be transmitted in a single MIU. The acknowledge can be either the request/response codes CON-
TINUE or REJECT. If CONTINUE is received, the SNEP sender shall transmit all further fragments without further
acknowledgement (the LLCP data link connection guarantees successful transmission). If REJECT isreceived, the
SNEP sender shall abort tranmsission. Fragmentation and reassembly are handled transparently by the nfc. snep.
SnepClient and nfc. snep.SnepServer implementation and only a REJECT would be visible to the user.

A SNEP server may return other response codes depending on the result of a request:

* A SUCCESS response indicates that the request has succeeded. For a GET request the response will include an
NDEF message. For a PUT request the response is empty.

e A NOT FOUND response says that the server has not found anything matching the request. This may be a
temporary of permanent situation, i.e. the same request send later could yield a different response.

* An EXCESS DATA response may be received if the server has found a matching response but sending it would
exhaust the SNEP client’s receive capabilities.

* A BAD REQUEST response indicates that the server detected a syntax error in the client’s request. This should
almost never be seen.

19

nfcpy documentation, Release 1.0.4

e The NOT IMPLEMENTED response will be returned if the client sent a request that the server has not imple-
mented. It applies to existing as well as yet undefined (future) request codes. The client can learn the difference
from the version field transmitted withnthe response, but in reality it doesn’t matter - it’s just not supported.

e With UNSUPPORTED VERSION the server reacts to a SNEP version number sent with the request that it
doesn’t support or refuses to support. This should be seen only if the client sends with a higher major version
number than the server has implemented. It could be received also if the client sends with a lower major version
number but SNEP servers are likely to support historic major versions if that ever happens (the current SNEP
version is 1.0).

Besides the protocol layer the SNEP specification also defines a Default SNEP Server with the well-known LLCP
service access point address 4 and service name urn:nfc:sn: snep. Certified NFC Forum Devices must have the
Default SNEP Server implemented. Due to that requirement the feature set and guarantees of the Default SNEP Server
are quite limited - it only implements the PUT request and the NDEF message to put could be rejected if it is more
than 1024 octets, though smartphones generally seem to support more.

4.1 Default Server

A basic Default SNEP Server can be built with nfcpy like in the following example (where all error and exception
handling has been sacrified for brevity).

import nfc
import nfc.snep

class DefaultSnepServer (nfc.snep.SnepServer) :
def _ init_ (self, 1llc):
nfc.snep.SnepServer.__init__ (self, 1llc, "urn:nfc:sn:snep")

def process_put_request (self, ndef_message) :
print ("client has put an NDEF message")
for record in ndef_message:
print (record)
return nfc.snep.Success

def startup(llc):
global my_snep_server
my_snep_server = DefaultSnepServer (1llc)
return llc

def connected(llc):
my_snep_server.start ()
return True

my_snep_server = None
clf = nfc.ContactlessFrontend ("usb")
clf.connect (llcp={'on-startup': startup, 'on-connect': connected})

This server will accept PUT requests with NDEF messages up to 1024 octets and return NOT IMPLEMENTED for
any GET request. To increase the size of NDEF messages that can be received, the max_ndef _message_recv_size
parameter can be passed to the nfc. snep. SnepServer class.

class DefaultSnepServer (nfc.snep.SnepServer) :
def _ init_ (self, 1llc):
nfc.snep.SnepServer.__init__ (self, 1llc, "urn:nfc:sn:snep", 10x1024)

20 Chapter 4. Simple NDEF Exchange Protocol

nfcpy documentation, Release 1.0.4

4.2 Using SNEP Put

The nfc. snep.SnepClient provides two methods to send an NDEF message to the Default SNEP Server. A
list of nde f . Record objects can be send with nfc. snep. SnepClient.put_records (). This encodes the
records into a sequence of octets that are then send with nfc. snep. SnepClient.put_octets ().

The example below shows how the function to send the NDEF message is started as a separate thread - it cannot be
directly called in connected () because the main thread context is used to operate the LLCP link.

import nfc
import nfc.snep
import threading

def send_ndef_message(llc):
sp = ndef.SmartposterRecord('http://nfcpy.org', 'nfcpy home')
nfc.snep.SnepClient (1llc) .put_records([sp])

def connected(llc):
threading.Thread (target=send_ndef_message, args=(llc,)) .start()
return True

clf = nfc.ContactlessFrontend ("usb")
clf.connect (llcp={'on-connect': connected})

Some phones require that a SNEP be present even if they are not going to send anything (Windows Phone 8 is such
example). The solution is to also run a SNEP server on urn:nfc:sn:snep which will accept but discard SNEP
Put requests from the peer device.

import nfc
import nfc.snep
import threading

server = None

def send_ndef_message(llc):
sp_record = ndef.SmartposterRecord('http://nfcpy.org', 'nfcpy home')
nfc.snep.SnepClient (11lc) .put_records([sp_record])

def startup(clf, 1llc):
global server
server = nfc.snep.SnepServer (llc, "urn:nfc:sn:snep")
return llc

def connected(llc):
server.start ()
threading.Thread (target=send_ndef_message, args=(llc,)) .start ()
return True

clf = nfc.ContactlessFrontend("usb")
clf.connect (llcp={'on-startup': startup, 'on-connect': connected})

4.3 Private Servers

The SNEP protocol can be used for other, non-standard, communication between a server and client component. A
private server can be run on a dynamically assigned service access point if a private service name is used. A private

4.2. Using SNEP Put 21

https://ndeflib.readthedocs.io/en/stable/ndef.html#ndef.Record

nfcpy documentation, Release 1.0.4

server may also implement the GET request if it defines what a GET shall mean other than to return something. Below
is an example of a private SNEP server that implements bot PUT and GET with the simple contract that whatever is
put to the server will be returned for a GET request that requests the same or empty NDEF type and name values (for
anything else the answer is NOT FOUND).

import nfc
import nfc.snep

class PrivateSnepServer (nfc.snep.SnepServer) :
def _ init_ (self, 1llc):

self.ndef_message = [ndef.Record()]
service_name = "urn:nfc:xsn:nfcpy.org:x—-snep"
nfc.snep.SnepServer.__init__ (self, 1llc, service_name, 2048)

def process_put_request (self, ndef_message) :
print ("client has put an NDEF message")
self.ndef_message = ndef_message
return nfc.snep.Success

def process_get_request (self, ndef_message):
print ("client requests an NDEF message")

if ndef_message[0] .type and ndef_message[0] .type != self.ndef_message[0].type:
return nfc.snep.NotFound
if ndef_message[0] .name and ndef_message[0] .name != self.ndef_message[0] .name:

return nfc.snep.NotFound
return self.ndef_message

def startup(clf, 1llc):
global my_snep_server
my_snep_server = PrivateSnepServer (llc)
return llc

def connected(llc):
my_snep_server.start ()
return True

my_snep_server = None
clf = nfc.ContactlessFrontend ("usb")
clf.connect (llcp={'on-startup': startup, 'on-connect': connected})

A client application knowing the private server above may then use PUT and GET to set an NDEF message on the
server and retrieve it back. The example code below also shows how results other than SUCCESS must be catched in
try-except clauses. Note that max_ndef _msg_recv_size parameter is a policy sent to the SNEP server with every GET
request.

import nfc
import nfc.snep
import threading

def send_ndef_message(llc):
sp_record = ndef.SmartposterRecord('http://nfcpy.org', 'nfcpy home')
snep = nfc.snep.SnepClient (llc, max_ndef_msg_recv_size=2048)
snep.connect ("urn:nfc:xsn:nfcpy.org:x—snep")
snep.put ([sp_record])

print ("x+%x get whatever the server has xxx")
print (snep.get_records([ndef.Record()]))

(continues on next page)

22 Chapter 4. Simple NDEF Exchange Protocol

nfcpy documentation, Release 1.0.4

(continued from previous page)

print ("x+% get a smart poster record *#*x")
print (snep.get ([ndef.Record("urn:nfc:wkt:Sp")]))

print ("xxx get something that isn't there xxx")
try:
snep.get ([ndef.Record("urn:nfc:wkt:Uri")])
except nfc.snep.SnepError as error:
print (repr (error))

def connected(llc):
threading.Thread (target=send_ndef_message, args=(llc,)) .start()
return True

clf = nfc.ContactlessFrontend ("usb")
clf.connect (llcp={'on-connect': connected})

4.3. Private Servers 23

nfcpy documentation, Release 1.0.4

24

Chapter 4. Simple NDEF Exchange Protocol

CHAPTER B

Example Programs

tagtool.py Read or write or format tags for NDEF use.
beam.py Exchange NDEF data with a smartphone.
sense.py Sense for contactless targets.

listen.py Listen as contactless target.

rfstate.py Observe the RF field presence.

5.1 tagtool.py

The tagtool.py example program can be used to read or write NFC Forum Tags. For some tags, currently Type 3 Tags
only, tagtool can also be used to format for NDEF use.

’$ tagtool.py [~-h|--help] [options] command

* Options
e Commands

- show

dump

— load

format
— protect

— emulate

* Examples

25

nfcpy documentation, Release 1.0.4

5.1.1 Options

-=loop, -1
Repeat the command endlessly, use Control-C to abort.

——wait
After reading or writing a tag, wait until it is removed before returning. This option is implicit when the option
——loop is set.

--technology {A,B,F}
Poll only for tags of a specific technology. The technologies NFC-A, NFC-B, and NFC-F are defined in the
NFC Forum Digital Specification. The technology indicator is case insensitive. The default is to poll for all
technologies.

-q
Do not print log messages except for errors and warnings.

—d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with —£. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, —d nfc enables all nfcpy debug logs, —d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

—-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless —q is set to supress info messages on <stderr>.

——nolog—-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.1llcp.
11c module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

——device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

* usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb: 054 c the first Sony reader.

e usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb: 001 would mean to use the first available reader on bus number 1.

* tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty : USBO : arygon for the Arygon APPx/ADRx at /dev/ttyUSBO.

e com:port :driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

e udp[:host] [:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

-p PASSWORD
Use PASSWORD to authentication with a tag that supports password protection. This would be the same
password as used in tagtool.py protect -—pto seta password.

26 Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

5.1.2 Commands

Available commands are listed below. The default if no command is specified is to invoke tagtool.py show.

show

The show command prints information about a tag, including NDEF data if present.:

$ tagtool.py [options] show [-h] [-V]

-v
Print verbose information about the tag found. The amount of additional information depends on the tag type.

dump

The dump command dumps tag data to the console or into a file. Data written to the console is a hexadecimal string.
Data written to a file is raw bytes.

$ tagtool.py [options] dump [-h] [-o FILE]

—-o FILE
Write data to FILE. Data format is plain bytes.

load

The load command writes data to a tag. Data may be plain bytes or a hex string, as generated by the dump command
or with the ndeftool.

$ tagtool.py [options] load [-h] FILE

FILE
Load NDEF data to write from FILE which must exist and be readable. The file may contain NDEF data in
either raw bytes or a hexadecimal string which gets converted to bytes. If FILE is specified as a single dash —
data is read from stdin.

format

The format command writes NDEF capability information for an empty NDEF memory area on NFC Forum compli-
ant tags. A tag type may be specified to give further options.

$ tagtool.py [options] format [-h] [options] {ttl,tt2,tt3,ttd}

—-—-version x.y
The format of the management information that describes the NDEF data area on the tag, as defined in the
NFC Forum tag specifications. Only defined version numbers are acceptable. The version must be expressed
as a version string of the form <major>.<minor>, where each component is an integer between 0 and 15,
inclusively. For example, ——version 1.3 denotes major version 1 and minor version 3. If ——version is
not provided, the highest possible version number is used.

——wipe BYTE
When formatting a tag the NDEF message data itself is usually not touched and could be easily recovered. The
—-—wipe options instructs the formatter to overwrite the complete data area with the given 8-bit integer value.
Depending on the tag type and size this may take a couple of seconds.

5.1. tagtool.py 27

nfcpy documentation, Release 1.0.4

format tt1

The format tt1 command formats the NDEF partition on a Type 1 Tag.

$ tagtool.py [options] format ttl [-h]

——magic BYTE
The value to use as the NDEF magic byte. This option can be used to set an invalid magic byte.

--ver x.y
Type 1 Tag NDEF mapping version number, specified as a version string in the same way as for to the
--version argument. The difference is that this version number will be written regardless of whether it
constitutes a valid version number.

—-—tms BYTE
Value to write into the tag memory size byte.

——rwa BYTE
Value to write into the read/write access byte.

format tt2

The format tt2 command formats the NDEF partition on a Type 2 Tag.

$ tagtool.py [options] format tt2 [-h]

format tt3

The format tt3 command formats the NDEF partition on a Type 3 Tag. With no additional options it does format for
the maximum capacity. With further options it is possible to create any kind of weird tag formats for testing reader
implementations. Note that none of these options is verified, except for the possible value range to fit the destination
field. None of the options is necessary to create a correct format.

$ tagtool.py [options] format tt3 [-h] [--ver STR] [--nbr INT] [--nbw INT]
[-—max INT] [--rfu INT] [--wf INT]
[-——rw INT] [--len INT] [--crc INT]
—-—-ver x.y

Type 3 Tag NDEF mapping version number, specified as a version string in the same way as for to the
—-—version argument. The difference is that this version number will be written regardless of whether it
constitutes a valid version number.

—-nbr N
Type 3 Tag attribute block Nbr field value, the number of blocks that can be read at once. Must be an 8-bit
integer in decimal or hexadecimal notation.

——-nbw N
Type 3 Tag attribute block Nbw field value, the number of blocks that can be written at once. Must be an 8-bit
integer in decimal or hexadecimal notation.

——max N
Type 3 Tag attribute block Nmaxb field value, which is the maximum number of blocks available for NDEF
data. Must be a 16-bit integer in decimal or hexadecimal notation.

——rfu N
Type 3 Tag attribute block reserved field value. Must be an 8-bit integer in decimal or hexadecimal notation.

28 Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

-—wf N
Type 3 Tag attribute block WriteF field value. Must be an 8-bit integer in decimal or hexadecimal notation.

——rw N
Type 3 Tag attribute block RW Flag field value. Must be an 8-bit integer in decimal or hexadecimal notation.

—--len N
Type 3 Tag attribute block Ln field value that specifies the actual size of the NDEF data stored. Must be a 24-bit
integer in decimal or hexadecimal notation.

-—-crc N
Type 3 Tag attribute block Checksum field value. Must be a 16-bit integer in decimal or hexadecimal notation.
If not specified, the checksum is computed to be correct.

format tt4

The format tt4 command formats the NDEF partition on a Type 4 Tag.

$ tagtool.py [options] format tt4d [-h]

protect

The protect command attempts to protect the tag against write modifications, optionally also against unauthorized
read access. Support for protection depends on the tag type and product. Without options the the default attempt
is protect with lock bits, be warned that this can not be undone. Lock bits are only available for type 1 and type 2
tags. With option —p the protection will be based on a password and further modifications are possible for anyone in
posession of the password. Password protection works on NXP NTAG 21x type 2 tags and Sony FeliCa Lite-S type 3
tags.

$ tagtool.py protect [-h] [-p PASSWORD] [-—-from BLOCK] [--unreadable]

-p PASSWORD
Protect the tag with the given PASSWORD. This works only for the NXP NTAG 21x type 2 tags and Sony
FeliCa Lite-S type 3 tags. The password string is used as a key to compute an HMAC-SHA256 with the tag
identifier (UID or IDm) as the message. The final password is the leftmost number of octets as needed for the
tag product, 6 octets for an NTAG 21x and 16 octets for a FeliCa Lite-S. A password protected tag can then be
unlocked with tagtool.py —p.

$ tagtool.py protect -p "my secret password"
$ tagtool.py -p "my secret password" protect -p "new secret"

——from BLOCK
Start protecting data from a given block number. This option does only make sense on tags that organize memory
in blocks or pages (Type 1, 2 and 3 Tags). A block corresponds to 4 byte of memory (a page) on Type 1 and 2
Tags, and 16 byte of memory on Type 3 Tags. If the tag has fewer blocks than specified, the value is silently
adjusted to the largest possible.

—-unreadable
This option can only be used with password based protection. The result is that the tag will become unreadable

without a password, i.e. the content is completely hidden. Further reads must then use the password option
before the command.

$ tagtool.py -p "secret password" show

5.1. tagtool.py 29

nfcpy documentation, Release 1.0.4

emulate

The emulate command emulates an NDEF tag if the hardware and driver support that functionality. The tag type must
be specified following the optional parameters. The only currently supported tag type it tt3.

$ tagtool.py emulate [-h] [-1] [-k] [-s SIZE] [-p FILE] [FILE] {tt3}

FILE
Initialize the tag with NDEF data read from FILE. If not specified the tag will be just empty.

-1, --loop
Automatically restart after the tag has been released by the Initiator.

-k, —--keep
If the ——1oop option is set, keep the same memory content after tag relase for the next tag activation. Without
the —k option the tag memory is initialized from the command options for every activation.

-s SIZE
The minimum size for NDEF data. Depending on the tag type this may be rounded up to the nearest multiple of
the tag storage granularity. If NDEF data is provided the size may be adjusted to fit the length of the data.

-p FILE
Preserve memory content in FILE after the tag is relased by the Initiator. The file is created if it does not exist
and otherwise overwritten.

emulate tt3

The emulate tt3 command emulates an NFC Forum Type 3 Tag.

$ tagtool.py [options] emulate [options] tt3 [-h] [-—-idm HEX] [-—-pmm HEX]
[--sys HEX] [--bitrate {212,424}]
——idm HEX
The Manufacture Identifier to use in the polling response. Specified as a hexadecimal string. Defaults to
O3FEFFE011223344.
——pmm HEX
The Manufacture Parameter to use in the polling response. Specified as a hexadecimal string. Defaults to
01EOO0000OOQOFFFFOO.

—-sys HEX, —--sc HEX
The system code use in the polling response if requested. Specified as a hexadecimal string. Defaults to 12FC.

--bitrate {212,424}
The bitrate to listen for and respond with. Must be either 212 or 424. Defaults to 212 kbps.

5.1.3 Examples

Copy NDEF from one tag to another:

’$ tagtool.py dump -o /tmp/tag.ndef && tagtool load /tmp/tag.ndef

Copy NDEF from one tag to many others:

’$ tagtool.py dump -o /tmp/tag.ndef && tagtool --loop load /tmp/tag.ndef

30 Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

5.2 beam.py

The beam.py example program uses the Simple NDEF Exchange Protocol (SNEP) to send or receive NDEF messages
to or from a peer device, in most cases this will be a smartphone. The name beam is inspired by Android Beam and
thus beam.py will be able to receive most content sent through Android Beam. It will not work for data that Android
Beam sends with connection handover to Bluetooth or Wi-Fi, this may become a feature in a later version. Despite it’s
name, beam.py works not only with Android phones but any NFC enabled phone that implements the NFC Forum
Default SNEP Server, such as Blackberry and Windows Phone 8.

$ beam.py [-h|--help] [OPTIONS] {send|recv} [-h] [OPTIONS]

* Options
e Commands
— send
% send link
% send text
* send file
* send ndef
- recv
* recv print
% recy save
% recv echo

% recv send

* Examples

5.2.1 Options

——loop, -1
Repeat the command endlessly, use Control-C to abort.

—-mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

—-miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

——lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

——listen—-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

—--no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

5.2. beam.py 31

nfcpy documentation, Release 1.0.4

-q
Do not print log messages except for errors and warnings.

—-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with —f£. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, —d nfc enables all nfcpy debug logs, —d nfc.tag enables debug logs for all tag
types, and —d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

—-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless —q is set to supress info messages on <stderr>.

—--nolog-symm

When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.1llcp.
11c module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

——device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb: 054c: 06c3 would open the first Sony RC-S380 reader and usb: 054 c the first Sony reader.

usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb: 001 would mean to use the first available reader on bus number 1.

tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty : USBO : arygon for the Arygon APPx/ADRX at /dev/ttyUSBO.

com:port :driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

udp [:host] [:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

5.2.2 Commands

send

Send an NDEF message to the peer device. The message depends on the positional argument that follows the send
command and additional data.

$ beam.py send [--timeit] {link,text,file,ndef} [-h] [OPTIONS]

——timeit
Measure and print the time that was needed to send the message.

send link

Send a hyperlink embedded into a smartposter record.

32

Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

$ beam.py send link URI [TITLE]

URI
The resource identifier, for example http://nfcpy.org.

TITLE
The smartposter title, for example "nfcpy project home".

send text

Send plain text embedded into an NDEF Text Record. The default language identifier en can be changed with the
—-—lang flag.

$ beam.py send text TEXT [OPTIONS]

TEXT
The text string to send.

—--lang STRING
The language code to use when constructing the NDEF Text Record.

send file

Send a data file. This will construct a single NDEF record with type and name set to the file’s mime type and path
name, and the payload containing the file content. Both record type and name can also be explicitly set with the options
-t and —n, respectively.

$ beam.py send file FILE [OPTIONS]

FILE
The file to send.

-t STRING
Set the record type. See the ndeflib for how to specify record types in nfcpy.

-n STRING
Set the record name (identifier).

send ndef

Send an NDEF message read from file. The file may contain multiple messages and if it does, then the strategy to
select a specific message for sending can be specified with the ——select STRATEGY option. For strategies that
select a different message per touch beam.py must be called with the ——1oop flag. The strategies first, last and
random select the first, or last, or a random message from FILE. The strategies next and cycle start with the first
message and then count up, the difference is that next stops at the last message while cycle continues with the first.

$ beam.py send ndef FILE [OPTIONS]

FILE
The file from which to read NDEF messages.

——select STRATEGY
The strategy for NDEF message selection, it may be one of first, last, next, cycle, random.

5.2. beam.py 33

https://ndeflib.readthedocs.io/en/stable/ndef.html#record-class

nfcpy documentation, Release 1.0.4

recv

Receive an NDEF message from the peer device. The next positional argument determines what is done with the
received message.

$ beam.py [OPTIONS] recv {print,save,echo,send} [-h] [OPTIONS]

recv print

Print the received message to the standard output stream.

$ beam.py recv print

recv save

Save the received message into a file. If the file already exists the message is appended.

$ beam.py recv save FILE

FILE
Name of the file to save messages received from the remote peer. If the file exists any new messages are
appended.

recv echo

Receive a message and send it back to the peer device.

$ beam.py recv echo

recv send

Receive a message and send back a corresponding message if such is found in the translations file. The translations
file must contain an even number of NDEF messages which are sequentially read into inbound/outbound pairs to
form a translation table. If the receved message corresponds to any of the translation table inbound messages the
corresponding outbound message is then sent back.

$ beam.py [OPTIONS] recv send [-h] TRANSLATIONS

TRANSLATIONS
A file with a sequence of NDEF messages.

5.2.3 Examples

Get a smartphone to open the nfcpy project page (which in fact just points to the code repository and documentation).

$ beam.py send link http://nfcpy.org "nfcpy project home"

Send the source file beam. py. On an Android phone this should pop up the “new tag collected” screen and show that
a text/x-python media type has been received.

34 Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

’$ beam.py send file beam.py

The file beam. py is about 11 KB and may take some time to transfer, depending on the phone hardware and software.
With a Google Nexus 10 it takes as little as 500 milliseconds while a Nexus 4 won’t do it under 2.5 seconds.

’$ beam.py send —--timeit file beam.py

Receive a single NDEF message from the peer device and save it to message.ndef (note that if message.ndef exists the
received data will be appended):

’$ beam.py recv save message.ndef

With the ——1oop option it gets easy to collect messages into a single file.

’$ beam.py —-—-loop recv save collected.ndef

A file that contains a sequence of request/response message pairs can be used to send a specific response message
whenever the associated request message was received.

echo -n "this is a request message" > request.txt
ndeftool.py pack —-n '' request.txt -o request.ndef
echo -n "this is my reponse message" > response.txt
ndeftool.py pack -n '' response.txt -o response.ndef
cat request.ndef response.ndef > translation.ndef
beam.py recv send translation.ndef

v Ay A

5.3 sense.py

The sense example demonstrates the use of the nfc.clf.ContactlessFrontend.sense () method to dis-
cover contactless targets.

’$ sense.py [target [target ...]] [options]

The farget arguments define the type, bitrate and optional attributes for the contactless targets that may be discov-
ered in a single sense loop. An empty loop (no targets) is allowed but is only useful to verify the nfc.clf.
ContactlessFrontend.sense () method behavior. Optional arguments allow to set an iteration count and
interval, continously repeat the (iterated) loop after a wait time, activate standard or verbose debug logs, and to specify
the local device to use.

A target is specified by bitrate and a type identifier A, B, F. The following example would first sense for a DEP Target
at 106kbps (in active communication mode), then for a Type A Target at 106 kbps, a Type B Target at 106kbps and a
Type F Target at 212kbps.

$ sense.py 106A 106B 212F

Additional parameters can be supplied as comma-delimited name=value pairs in brackets. The example below searches
for a 106 kbps DEP Target (in active communication mode) and then changes communication speed to 424 kbps.

$ sense.py 'l06A(atr_reg=d400FFFFFFFFFFFFFFFF62260000003246666d010110) '

$ sense.py 106A —--atr d400FFFFFFFFFFFFFFFF62260000003246666d010110

5.3. sense.py 35

nfcpy documentation, Release 1.0.4

5.3.1 Options

-h, —--help
Show a help message and exit.

——dep params
Attempt a DEP Target activation in passive communication mode when an appropriate Type A or Type F Target
was discovered in in the main sense loop. The params argument defines optional attributes for the nfc.clf.
DEP target object. The example below would try a DEP Target activation (in passive communication mode)
with a parameter change to 424 kbps after 106 kbps Type A Target discovery.

$ sense.py 106A —--dep 'psl_reg=D404001203"'

—i number
Specifies the number of iterations to run (default is 1 iteration). Each iteration is a sense for all the targets given
as positional arguments.

-t seconds
The time between two iterations (default is 0.2 sec). It is measured from the start of one iteration to the start of
the next iteration, effectively it will thus never be shorter than the execution time of an iteration.

-r, ——repeat
Forever repeat the sense loop (including the number of iterations). Execution can be terminated with Ctrl-C.

-w seconds
Wait the specified number of seconds between repetitions (the default wait time is 0.1 sec).

—-d, —--debug
Activate debug log messages on standard error output.

-v, —-verbose
Activate more debug log messages, most notably all commands send to the local device will be logged as well
as their responses.

——device path
Specify a local device search path (the default is usb). For device path construction rules see nfc.clf.
ContactlessFrontend.open ().

5.4 listen.py

Listen as Target for activation requests from a remote Initiator.

Usage:

listen.py tt2 [options] [--uid UID]

listen.py tt3 [options] [-—-idm <idm>] [-—pmm <pmm>] [-—-sys <sys>]
listen.py tt4 [options] [—-—uid <uid>]

listen.py dep [options] [-—-1id3 <id3>] [-—-gbt <gbt>] [-—hce]
listen.py -h | ——-help

As the Target selected with the first positional argument listen.py waits ‘—time T’ seconds for activation by a remote
device and prints the local target configuration if not timed out. The listen period is repeated after ‘—wait T" seconds if
the ‘—repeat’ flag is given.

3

Without the ‘—repeat’ flag, the exit status is O when activated and 1 if timed out, with the ‘—repeat’ flag it is O for
termination by keyboard interrupt (Ctrl-C). For argument errors and unsupported targets listen.py exits with 2. If a
local device is not found or was removed listen.py exits with 3.

36 Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

Options:

-h, --help show this help message and exit

-t, --time T listen time in seconds [default: 2.5]

-w, --wait T time between repetations [default: 1.0]

-1, --repeat repeat forever (cancel with Ctrl-C)

-d, --debug output debug log messages to stderr

-v, --verbose print and log more information

--device PATH local device search path [default: usb]

--bitrate BR set bitrate (default is 106 for A/B and 212 for F)

--uid UID tt2/tt4 identifier [default: 08010203]

--idm IDM tt3 identifier [default: 02FE010203040506]

--pmm PMM tt3 parameters [default: FFFFFFFFFFFFFFFF]

--sys SYS tt3 system code [default: 12FC]

--id3 ID3 dep nfcid3 [default: 01FE0102030405060708]

--gbt GBT dep general bytes [default: 46666D010111]

--hce announce dep and tt4 support for Type A
Examples:
listen.py tt2 —-—uid 08ABCDEF # listen as Type 2 Tag with this UID
listen.py tt3 —-bitrate 424 # listen as Type 3 Tag at 424 kbps
listen.py tt3 —-sys 0003 # use the Suica system code for FeliCa
listen.py dep —-gbt '' # send ATR response without general bytes
listen.py dep —-hce # offer NFC-DEP Protocol and Type 4A Tag
Source:

#!/usr/bin/env python

—x— coding:

S H R R OH R R O R R H R R W R %R R

He

Licence.

writing,
distributed on an
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
express or implied.

latin-1

Licensed under the EUPL,
will be approved by the European Commission - subsequent
versions of the EUPL (the
You may not use this work except in compliance with the

Copyright 2015 Stephen Tiedemann <stephen.tiedemann@gmail.com>

Version 1.1 or — as soon they

"Licence");

You may obtain a copy of the Licence at:
https://joinup.ec.europa.eu/software/page/eupl

Unless required by applicable law or agreed to in

software distributed under the Licence 1is

"AS IS" basis,

either

See the Licence for the specific language governing
permissions and limitations under the Licence.

5.4. listen.py

(continues on next page)

nfcpy documentation, Release 1.0.4

(continued from previous page)

"""Listen as Target for activation requests from a remote Initiator.
rUsage: «

listen.py tt2 [options] [—--uid UID]

listen.py tt3 [options] [--idm <idm>] [—-—-pmm <pmm>] [--Sys <sys>]
listen.py tt4 [options] [--uid <uid>]

listen.py dep [options] [--1id3 <id3>] [--gbt <gbt>] [--hce]
listen.py —-h | —--help

As the Target selected with the first positional argument listen.py
waits '—-—time T' seconds for activation by a remote device and prints
the local target configuration if not timed out. The listen period is
repeated after '--wait T' seconds if the '—--repeat' flag is given.

Without the '—--repeat' flag, the exit status is 0 when activated and 1
if timed out, with the '—--repeat' flag it is 0 for termination by
keyboard interrupt (Ctrl-C). For argument errors and unsupported
targets listen.py exits with 2. If a local device is not found or was
removed listen.py exits with 3.

**Options: **

-h, --help show this help message and exit

-t, ——time T listen time in seconds [default: 2.5]
-w, ——wait T time between repetations [default: 1.0]
-r, ——repeat repeat forever (cancel with Ctrl-C)

-d, ——-debug output debug log messages to stderr

-v, —-verbose print and log more information

—-—device PATH 1local device search path [default: usb]
——bitrate BR set bitrate (default is 106 for A/B and 212 for F)

——uid UID tt2/tt4d identifier [default: 08010203]
—-—idm IDM tt3 identifier [default: 02FE010203040506]
——pmm PMM tt3 parameters [default: FFFFFFFFFEFFFFFFF]
--sys SYS tt3 system code [default: 12FC]

--id3 ID3 dep nfcid3 [default: 01FE0102030405060708]
-—gbt GBT dep general bytes [default: 46666D010111]
——hce announce dep and tt4 support for Type A

**xExamples: x*

listen.py tt2 —-uid 08ABCDEF # listen as Type 2 Tag with this UID
listen.py tt3 —--bitrate 424 # listen as Type 3 Tag at 424 kbps
listen.py tt3 —--sys 0003 # use the Suica system code for FeliCa
listen.py dep —--gbt '' # send ATR response without general bytes
listen.py dep —--hce # offer NFC-DEP Protocol and Type 4A Tag

mon

from _ future import print_function

import os
import re
import sys
import struct
import time
import errno
import logging

(continues on next page)

38 Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

(continued from previous page)

from binascii import hexlify

import nfc
import nfc.clf

def main (args):
if args['-—-debug']:
loglevel = logging.DEBUG - (1 if args['--verbose'] else 0)
logging.getLogger ("nfc.clf") .setLevel (loglevel)
logging.getLogger () .setLevel (loglevel)

try:
try:
waittime = float (args|['—-——wait'])
except ValueError:
assert 0, "the '--wait T' argument must be a number"
assert waittime >= 0, "the '--wait T' argument must be positive"
try:
timeout = float (args['—-—-time'])
except ValueError:
assert 0, "the '--time T' argument must be a number"
assert timeout >= 0, "the '--time T' argument must be positive"

except AssertionError as error:
print (str(error), file=sys.stderr)

return 2
try:
clf = nfc.ContactlessFrontend(args['—-—device'])
except IOError:
print ("no device found on path %r" % args['--device'], file=sys.stderr)
return 3
try:

while True:
target = None
try:
if args['tt2']:
target = listen_tta(timeout, clf, args)
if args['tt3']:
target = listen_ttf (timeout, clf, args)
if args['ttd']:

target = listen_tta(timeout, clf, args)
if args['dep']:
target = listen_dep (timeout, clf, args)
if target:
print (" (0} {1}".format (time.strftime("2%X"), target))
except nfc.clf.CommunicationError as error:
if args['--verbose']:
logging.error ("%r", error)

except AssertionError as error:
print (str(error), file=sys.stderr)
return 2

if args['—-—repeat']:
time.sleep (waittime)
else:

(continues on next page)

5.4. listen.py 39

nfcpy documentation, Release 1.0.4

(continued from previous page)

def

return 0 if target is not None else 1

except nfc.clf.UnsupportedTargetError as error:
logging.error ("%r", error)
return 2

except IOError as error:
if error.errno != errno.EIO:
logging.error ("2r", error)
else:
logging.error ("lost connection to local device")
return 3

except KeyboardInterrupt:
pass

finally:
clf.close()

listen_tta(timeout, clf, args):

try:

bitrate = (int(args['—-—-bitrate']) if args['--bitrate'] else 106)
except ValueError:

assert 0, "the '—--bitrate' argument must be an integer"
assert bitrate >= 0, "the '—--bitrate' argument must be a positive integer"
try:

uid = bytearray.fromhex (args|['--uid'])
except ValueError:

assert 0, "the '—--uid' argument must be hexadecimal"
assert len(uid) in (4, 7, 10), "the '—--uid' must be 4, 7, or 10 bytes"

target = nfc.clf.LocalTarget (str(bitrate) + 'A")
target.sens_res = bytearray (b"\x01\x01")

target.sdd_res = uid

target.sel_res = bytearray (b"\x00" if args['tt2'] else b"\x20")

target = clf.listen(target, timeout)

if target and target.tt2_cmd:
logging.debug ("rcvd TT2_CMD %s", hexlify(target.tt2_cmd) .decode())

Verify that we can send a response.
if target.tt2_cmd == b"\x30\x00":
data = bytearray.fromhex ("046FD536 11127A00 79C80000 E110060F"™)
elif target.tt2_cmd[0] == 0x30:
data = bytearray (16)
else:
logging.warning ("communication not verified")
return target

try:
clf.exchange (data, timeout=1)
return target
except nfc.clf.CommunicationError:
logging.error ("communication failure after activation")

(continues on next page)

40

Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

(continued from previous page)

if target and target.tt4_cmd:
logging.debug ("rcvd TT4_CMD ©¢s", hexlify(target.tt4d_cmd) .decode())
logging.warning ("communication not verified")
return target

def listen_ttf (timeout, clf, args):

try:
bitrate = (int(args['—--bitrate']) if args['--bitrate'] else 212)
except ValueError:
assert 0, "the '—--bitrate' argument must be an integer"
assert bitrate >= 0, "the '--bitrate' argument must be a positive integer"
try:
idm = bytearray.fromhex (args['--idm'][0:16])
except ValueError:
assert 0, "the '-—-idm' argument must be hexadecimal"
idm += os.urandom(8 - len (idm))
try:
pmm = bytearray.fromhex(args['-—pmm'][0:16])
except ValueError:
assert 0, "the '—--pmm' argument must be hexadecimal"

pmam += (8 — len(pmm)) * b"\XFE"

try:
_sys = bytearray.fromhex (args['--sys']1[0:4])
except ValueError:
assert 0, "the '--sys' argument must be hexadecimal"

_sys += (2 - len(_sys)) x b"\xFEF"

target = nfc.clf.LocalTarget (str(bitrate) + 'F')
target.sensf_res = b"\x01" + idm + pmm + _sys

target = clf.listen(target, timeout)

if target and target.tt3_cmd:
if target.tt3_cmd[0] == 0x06:
response = struct.pack("B", 29) + b"\7" + idm + b"\0\O\1" + \
bytearray (16)
clf.exchange (response, timeout=0)
elif target.tt3_cmd[0] == 0x0C:
response = struct.pack("B", 13) + b"\x0D" + idm + b"\x01" + _sys
else:
logging.warning ("communication not verified")
return target

try:
clf.exchange (response, timeout=1)
return target
except nfc.clf.CommunicationError:
logging.error ("communication failure after activation")

def listen_dep (timeout, clf, args):
try:

(continues on next page)

5.4. listen.py 41

nfcpy documentation, Release 1.0.4

(continued from previous page)

id3 = bytearray.fromhex (args['--1d3']1[0:201])
except ValueError:

assert 0, "the '--id3' argument must be hexadecimal"
id3 += os.urandom (10 - len (id3))

try:
gbt = bytearray.fromhex(args['—-—gbt'])
except ValueError:
assert 0, "the '--gbt' argument must be hexadecimal"

target = nfc.clf.LocalTarget ()
target.sensf_res = bytearray.fromhex ("01") + 1id3[0:8] + bytearray(10)
target.sens_res = bytearray.fromhex ("0101")
target.sdd_res = bytearray.fromhex ("08") + id3[-3:]
target.sel_res = bytearray.fromhex ("60" if args['-—hce'] else "40")
target.atr_res = b"\xD5\x01" + id3 + b"\0\0\0\x08" + (

b"\x32" if gbt else b"\0") + gbt

target = clf.listen(target, timeout)
if target and target.dep_req:
logging.debug ("rcvd DEP_REQ ¢s", hexlify(target.dep_req) .decode())

Verify that we can indeed send a response. Note that we do
not handle a DID, but nobody is sending them anyway. Further
note that target.dep_req is without the frame length byte
but exchange () works on frames and so it has to be added.
if target.dep_req.startswith (b"\xD4\x06\x80") :

older phones start with attention

dep_res = bytearray.fromhex ("04 D5 07 80")
elif target.dep_req.startswith (b"\xD4\x06\x00") :

newer phones send information packet

dep_res = bytearray.fromhex ("06 D5 07 00 00 00")
else:

logging.warning ("communication not verified")

return target

logging.debug ("send DEP_RES $s",
hexlify (memoryview (dep_res) [1:]) .decode())
try:
data = clf.exchange (dep_res, timeout=1)
assert data and data[0] == len(data)
except (nfc.clf.CommunicationError, AssertionError):
logging.error ("communication failure after activation")
return None

logging.debug ("rcvd DEP_REQ 2s",
hexlify (memoryview (data) [1:]) .decode())
mode = "passive" if target.sens_res or target.sensf_res else "active"
logging.debug ("activated in %s communication mode", mode)
return target

if name == '__main__ ':
logging.basicConfig(format="'% (relativeCreated)d ms [% (name)s] % (message)s')
try:

from docopt import docopt

(continues on next page)

42 Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

(continued from previous page)

except ImportError:
sys.exit ("the 'docopt' module is needed to execute this program")

remove restructured text formatting before input to docopt
usage = re.sub(r' (?<=\n)\x\x (\w+:)**».x\n', r'\1', _ doc_)
sys.exit (main (docopt (usage)))

5.5 rfstate.py

Observe the state of an external RF field.

Usage:

rfstate.py [options]

This is a simple utility to observe when a remote device activates and deactivates the 13.56 MHz carrier frequency.
For each state change a message is printed with timestamp, the transition and time elapsed since the previous state
change. This only works with some devices based on PN53x and uses nfcpy internal interfaces.

Options:
-h, --help show this help message and exit
-t, --time T listen time in seconds [default: 2.5]
-d, --debug output debug log messages to stderr
-v, --verbose print and log more information
--device PATH local device search path [default: usb]
Source:

#!/usr/bin/env python
—%— coding: latin-1 —*-

H

Copyright 2015 Stephen Tiedemann <stephen.tiedemann@gmail.com>

Licensed under the EUPL, Version 1.1 or - as soon they
will be approved by the European Commission — subsequent
versions of the EUPL (the "Licence");

You may not use this work except in compliance with the
Licence.

You may obtain a copy of the Licence at:

https://joinup.ec.europa.eu/software/page/eupl

Unless required by applicable law or agreed to 1in
writing, software distributed under the Licence 1is
distributed on an "AS IS" basis,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

See the Licence for the specific language governing

S o H R R O R W ¥ R R R R %R R R R %

permissions and limitations under the Licence.

=

"""Observe the state of an external RF field.

(continues on next page)

5.5. ristate.py 43

nfcpy documentation, Release 1.0.4

(continued from previous page)

xUsage: x
rfstate.py [options]

This is a simple utility to observe when a remote device activates and
deactivates the 13.56 MHz carrier frequency. For each state change a
message 1is printed with timestamp, the transition and time elapsed
since the previous state change. This only works with some devices
based on PN53x and uses nfcpy internal interfaces.

*+Options: **

-h, —--help show this help message and exit

-t, ——time T listen time 1in seconds [default: 2.5]
-d, ——debug output debug log messages to stderr
-v, —-verbose print and log more information

—-—device PATH local device search path [default: usb]

mwn

from _ future import print_function

import re
import sys
import time
import errno
import logging

import nfc
import nfc.clf
import nfc.clf.pn53x

def main (args):
if args["-—-debug"]:
loglevel = logging.DEBUG - (1 if args["--verbose"] else 0)
logging.getLogger ("nfc.clf") .setLevel (loglevel)

try:

time_to_return = time.time() + float (args['--time'])
except ValueError as e:

logging.error ("while parsing '—-—-time' " + str(e))

sys.exit (-1)

clf = nfc.ContactlessFrontend()
if clf.open(args|['——device']):
try:
assert isinstance(clf.device, nfc.clf.pn53x.Device), \
"rfstate.py does only work with PN53x based devices"
chipset = clf.device.chipset

regs = [("CIU_FIFOLevel", 0b10000000)] # clear fifo
regs.extend(zip (25 % ["CIU_FIFOData"], bytearray(25)))
regs.extend ([
("CIU_Command", 0b00000001), # Configure command
("CIU_Control", 0b00000000), # act as target (b4=0)
("CIU_TxControl", 0b10000000), # disable output on TX1/TX2
("CIU_TxAuto", 0b00100000), # wake up when rf level detected

(continues on next page)

44 Chapter 5. Example Programs

nfcpy documentation, Release 1.0.4

(continued from previous page)

("CIU_CommIRg", 0b0O1111111), # clear interrupt request bits
("CIU_DivIRg", 0b0O1111111), # clear interrupt request bits
1)

chipset.write_register (xregs)

if args["--verbose"]:
time_t0 = time.time ()
chipset.read_register ("CIU_Statusl", "CIU_Status2")
delta_t = time.time () - time_tO0
print ("approx. ¢d samples/s" % int (1 / delta_t))

status = chipset.read_register ("CIU_Statusl", "CIU_Status2")
rfstate = "ON" if status[1] & 0b00100000 else "OFF"

time_t0 = time.time ()

print ("$.67f RE $s" % (time_t0, rfstate))

while time.time () < time_to_return:
status = chipset.read_register ("CIU_Statusl", "CIU_Status2")
if rfstate == "OFF" and status[l] & 0x20 == 0x20:
rfstate = "ON"
time_tl = time.time ()

delta_t = time_tl - time_tO
print ("%.67f RF ON after %.6f" % (time_tl, delta_t))
time_t0 = time_t1

if rfstate == "ON" and status[l] & 0x20 == 0x00:
rfstate = "OFF"
time_tl = time.time ()
delta_t = time_tl - time_tO

print ("2%.67f REF OFF after %.6f" % (time_tl, delta_t))
time_t0 = time_t1
except nfc.clf.UnsupportedTargetError as error:
print (repr (error))
except IOError as error:
if error.errno == errno.EIO:
print ("lost connection to local device")
else:
print (repr (error))
except (NotImplementedError, AssertionError) as error:
print (str (error))
except KeyboardInterrupt:
pass
finally:
clf.close ()

if _ name_ == '_ main__
logging.basicConfig(format="'% (relativeCreated)d ms [% (name)s] % (message)s')

try:
from docopt import docopt
except ImportError:
sys.exit ("the 'docopt' module is needed to execute this program")

remove restructured text formatting before input to docopt
usage = re.sub(r' (?<=\n)*\x (\wt+:)*\x.+x\n', r'\1', _ doc_)
sys.exit (main (docopt (usage)))

5.5. ristate.py 45

nfcpy documentation, Release 1.0.4

46

Chapter 5. Example Programs

CHAPTER O

Interoperability Tests

6.1 Logical Link Control Protocol

6.1.1 llcp-test-server.py

The LLCP test server program implements an NFC device that provides three distinct server applications:

1. A connection-less echo server that accepts connection-less transport mode PDUs. Service data units may have
any size between zero and the maximum information unit size announced with the LLCP Link MIU parameter.
Inbound service data units enter a linear buffer of service data units. The buffer has a capacity of two service data
units. The first service data unit entering the buffer starts a delay timer of 2 seconds (echo delay). Expiration
of the delay timer causes service data units in the buffer to be sent back to the original sender, which may be
different for each service data unit, until the buffer is completely emptied. The buffer empty condition then
re-enables the delay timer start event for the next service data unit.

2. A connection-mode echo server that waits for a connect request and then accepts and processes connection-
oriented transport mode PDUs. Further connect requests will be rejected until termination of the data link
connection. When accepting the connect request, the receive window parameter is transmitted with a value of 2.

The connection-oriented mode echo service stores inbound service data units in a linear buffer of service data
units. The buffer has a capacity of three service data units. The first service data unit entering the buffer starts
a delay timer of 2 seconds (echo delay). Expiration of the delay timer causes service data units in the buffer
to be sent back to the orignal sender until the buffer is completely emptied. The buffer empty condition then
re-enables the delay timer start event for the next service data unit.

The echo service determines itself as busy if it is unable to accept further incoming service data units.

3. A connection-mode dump server that accepts connections and then accepts and forgets all data received on a
data link connection. This is mostly useful to measure transfer speed under load conditions.

Usage

$ llcp-test-server.py [-h|--help] [OPTION]...

Options

47

nfcpy documentation, Release 1.0.4

——loop, -1
Repeat the command endlessly, use Control-C to abort.

—-mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

——miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

--lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

—-listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

—-—-no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

—d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with —£. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, ~d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

—-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless —q is set to supress info messages on <stderr>.

—--nolog-symm

When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.1llcp.
11c module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

——device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

* usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c: 06c3 would open the first Sony RC-S380 reader and usb : 054c the first Sony reader.

* usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb: 001 would mean to use the first available reader on bus number 1.

* tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty : USBO : arygon for the Arygon APPx/ADRx at /dev/ttyUSBO.

e com:port :driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

e udp[:host] [:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

48 Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

6.1.2 licp-test-client.py

Usage

$ llcp-test-client.py [-h|--help] [OPTION]...

Options

-t N, ——test N
Run test number N. May be set more than once.

-T, —-test-all
Run all tests.

——cl-echo SAP
Service access point address of the connection-less mode echo server.

——co—-echo SAP
Service access point address of the connection-oriented mode echo server.

——loop, -1
Repeat the command endlessly, use Control-C to abort.

—-mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

——miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

—-1lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

——listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

—--no-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

—d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with —f£. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, —d nfc enables all nfcpy debug logs, —d nfc.tag enables debug logs for all tag
types, and —d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

—f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless —q is set to supress info messages on <stderr>.

—--nolog-symm

When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.1llcp.
11c module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

——device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

6.1. Logical Link Control Protocol 49

nfcpy documentation, Release 1.0.4

e usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c: 06c3 would open the first Sony RC-S380 reader and usb : 054c the first Sony reader.

* usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb: 001 would mean to use the first available reader on bus number 1.

* tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty : USBO : arygon for the Arygon APPx/ADRx at /dev/ttyUSBO.

e com:port :driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

e udp[:host] [:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

Test Scenarios

Link activation, symmetry and deactivation

$ llcp-test-client.py -t 1

Verify that the LLCP Link can be activated successfully, that the symmetry procedure is performed and the link can
be intentionally deactivated.

1. Start the MAC link activation procedure on two implementations and verify that the version number parameter
is received and version number agreement is achieved.

2. Verity for a duration of 5 seconds that SYMM PDUs are exchanged within the Link Timout values provided by
the implementations.

3. Perform intentional link deactivation by sending a DISC PDU to the remote Link Management component.
Verify that SYMM PDUs are no longer exchanged.

Connection-less information transfer

$ llcp-test-client.py -t 2

Verify that the source and destination access point address fields are correctly interpreted, the content of the infor-
mation field is extracted as the service data unit and the service data unit can take any length between zero and the
announced Link MIU. The LLCP Link must be activated prior to running this scenario and the Link MIU of the peer
implementation must have been determined. In this scenario, sending of a service data unit (SDU) means that the SDU
is carried within the information field of a Ul PDU.

1. Send a service data unit of 128 octets length to the connection-less mode echo service and verify that the same
SDU is sent back after the echo delay time.

2. Send within echo delay time with a time interval of at least 0.5 second two consecutive service data units of 128
octets length to the connection-less mode echo service and verify that both SDUs are sent back correctly.

3. Send within echo delay time with a time interval of at least 0.5 second three consecutive service data units of
128 octets length to the connection-less mode echo service and verify that the first two SDUs are sent back
correctly and the third SDU is discarded.

50 Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

4. Send a service data unit of zero octets length to the connection-less mode echo service and verify that the same
zero length SDU is sent back after the echo delay time.

5. Send a service data unit of maximum octets length to the connection-less mode echo service and verify that the
same SDU is sent back after the echo delay time. Note that the maximum length here must be the smaller value
of both implementations Link MIU.

Connection-oriented information transfer

$ llcp-test-client.py -t 3

Verify that a data link connection can be established, a service data unit is received and sent back correctly and the
data link connection can be terminated. The LLCP Link must be activated prior to running this scenario and the
connection-oriented mode echo service must be in the unconnected state. In this scenario, sending of a service data
unit (SDU) means that the SDU is carried within the information field of an I PDU.

1. Send a CONNECT PDU to the connection-oriented mode echo service and verify that the connection request is
acknowledged with a CC PDU. The CONNECT PDU shall encode the RW parameter with a value of 2. Verify
that the CC PDU encodes the RW parameter with a value of 2 (as specified for the echo server).

2. Send a single service data unit of 128 octets length over the data link connection and verify that the echo service
sends an RR PDU before returning the same SDU after the echo delay time.

3. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Send and receive sequence number handling

$ llcp-test-client.py -t 4

Verify that a sequence of service data units that causes the send and receive sequence numbers to take all possible
values is received and sent back correctly. The LLCP Link must be activated prior to running this scenario and the
connection-oriented mode echo service must be in the unconnected state. In this scenario, sending of a service data
unit (SDU) means that the SDU is carried within the information field of an I PDU.

1. Send a CONNECT PDU to the connection-oriented mode echo service and verify that the connection request is
acknowledged with a CC PDU. The CONNECT PDU shall encode the RW parameter with a value of 2. Verify
that the CC PDU encodes the RW parameter with a value of 2 (as specified for the echo server).

2. Send a sequence of at least 16 data units of each 128 octets length over the data link connection and verify that
all SDUs are sent back correctly.

3. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Handling of receiver busy condition

$ llcp-test-client.py -t 5

Verify the handling of a busy condition. The LLCP Link must be activated prior to running this scenario and the
connection-oriented mode echo service must be in the unconnected state. In this scenario, sending of a service data
unit (SDU) shall mean that the SDU is carried within the information field of an I PDU.

6.1. Logical Link Control Protocol 51

nfcpy documentation, Release 1.0.4

1. Send a CONNECT PDU to the connection-oriented mode echo service and verify that the connect request is
acknowledged with a CC PDU. The CONNECT PDU shall encode the RW parameter with a value of 0. Verify
that the CC PDU encodes the RW parameter with a value of 2 (as specified for the echo server).

2. Send four service data units of 128 octets length over the data link connection and verify that the echo service
enters the busy state when acknowledging the last packet.

3. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Rejection of connect request

$ llcp-test-client.py -t 6

Verify that an attempt to establish a second connection with the connection-oriented mode echo service is rejected.
The LLCP Link must be activated prior to running this scenario.

1. Send a first CONNECT PDU to the connection-oriented mode echo service and verify that the connect request
is acknowledged with a CC PDU.

2. Send a second CONNECT PDU to the connection-oriented mode echo service and verify that the connect
request is rejected with a DM PDU and appropriate reason code.

3. Send a service data unit of 128 octets length over the data link connection and verify that the echo service returns
the same SDU after the echo delay time.

4. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Connect by service name

$ llcp-test-client.py -t 7

Verify that a data link connection can be established by specifying a service name. The LLCP Link must be activated
prior to running this scenario and the connection-oriented mode echo service must be in the unconnected state.

1. Send a CONNECT PDU with an SN parameter that encodes the value “urn:nfc:sn:co-echo” to the service
discovery service access point address and verify that the connect request is acknowledged with a CC PDU.

2. Send a service data unit over the data link connection and verify that it is sent back correctly.

3. Send a DISC PDU to terminate the data link connection and verify that the echo service responds with a correct
DM PDU.

Aggregation and disaggregation

$ llcp-test-client.py -t 8

Verify that the aggregation procedure is performed correctly. The LLCP Link must be activated prior to running
this scenario. In this scenario, sending of a service data unit (SDU) shall mean that the SDU is carried within the
information field of a UI PDU.

1. Send two service data units of 50 octets length to the connection-less mode echo service such that the two
resulting UI PDUs will be aggregated into a single AGF PDU by the LLC sublayer. Verify that both SDUs are
sent back correctly and in the same order.

52 Chapter 6. Interoperability Tests

urn:nfc:sn:co-echo

nfcpy documentation, Release 1.0.4

2. Send three service data units of 50 octets length to the connection-less mode echo service such that the three
resulting UI PDUs will be aggregated into a single AGF PDU by the LLC sublayer. Verify that the two first
SDUs are sent back correctly and the third SDU is discarded.

Service name lookup

$ llcp-test-client.py -t 9

Verify that a service name is correctly resolved into a service access point address by the remote LL.C. The LLCP Link
must be activated prior to running this scenario. In this scenario, sending of a service data unit (SDU) shall mean that
the SDU is carried within the information field of a Ul PDU.

1. Send an SNL PDU with an SDREQ parameter in the information field that encodes the value “urn:nfc:sn:sdp”
to the service discovery service access point address and verify that the request is responded with an SNL PDU
that contains an SDRES parameter with the SAP value ‘1’ and a TID value that is the same as the value encoded
in the antecedently transmitted SDREQ parameter.

2. Send an SNL PDU with an SDREQ parameter in the information field that encodes the value “urn:nfc:sn:
cl-echo” to the service discovery service access point address and verify that the request is responded with an
SNL PDU that contains an SDRES parameter with a SAP value other than ‘0’ and a TID value that is the same
as the value encoded in the antecedently transmitted SDREQ parameter.

3. Send a service data unit of 128 octets length to the service access point address received in step 2 and verify that
the same SDU is sent back after the echo delay time.

4. Send an SNL PDU with an SDREQ parameter in the information field that encodes the value “urn:nfc:sn:
sdp-test” to the service discovery service access point address and verify that the request is responded with an
SNL PDU that contains an SDRES parameter with the SAP value ‘0’ and a TID value that is the same as the
value encoded in the antecedently transmitted SDREQ parameter.

Send more data than allowed

$ llcp-test-client.py -t 10

Use invalid send sequence number

$ llcp-test-client.py -t 11

Use maximum data size on data link connection

$ llcp-test-client.py -t 12

Connect, release and connect again

$ llcp-test-client.py -t 13

6.1. Logical Link Control Protocol 53

urn:nfc:sn:sdp
urn:nfc:sn:cl-echo
urn:nfc:sn:cl-echo
urn:nfc:sn:sdp-test
urn:nfc:sn:sdp-test

nfcpy documentation, Release 1.0.4

Connect to unknown service name

$ llcp-test-client.py -t 14

Verify that a data link connection can be established by specifying a service name. The LLCP Link must be activated
prior to running this scenario and the connection-oriented mode echo service must be in the unconnected state.

1. Send a CONNECT PDU with an SN parameter that encodes the value “urn:nfc:sn:co-echo-unknown” to the
service discovery service access point address and verify that the connect request is rejected.

6.2 Simple NDEF Exchange Protocol

6.2.1 snep-test-server.py

The SNEP test server program implements an NFC device that provides two SNEP servers:

1. A Default SNEP Server that is compliant with the NFC Forum Default SNEP Server defined in section 6 of the
SNEP specification.

2. A Validation SNEP Server that accepts SNEP Put and Get requests. A Put request causes the server to store the
NDEF message transmitted with the request. A Get request causes the server to attempt to return a previously
stored NDEF message of the same NDEF message type and identifier as transmitted with the request. The server
will keep any number of distinct NDEF messages received with Put request until the client terminates the data
link connection.

The Validation @ SNEP Server wuses the service name wurn:nfc:xsn:nfc-forum.
org:snep-validation, assigned for the purpose of validating the SNEP candidate specification
prior to adoption.

Usage

$ snep-test-server.py [-h|--help] [OPTION]...

Options

——loop, -1
Repeat the command endlessly, use Control-C to abort.

—-mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

——miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

——lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

——listen—-time INT

Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

——-no—aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

54 Chapter 6. Interoperability Tests

urn:nfc:sn:co-echo-unknown

nfcpy documentation, Release 1.0.4

—d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with —£. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, ~d nfc enables all nfcpy debug logs, —d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

—-f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless —q is set to supress info messages on <stderr>.

——nolog—-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.1llcp.
11c module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

——device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

e usb[:vendor|[:product]] with optional vendor and product as four digit hexadecimal numbers,

like usb:054c:06c3 would open the first Sony RC-S380 reader and usb: 054 c the first Sony reader.

usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb: 001 would mean to use the first available reader on bus number 1.

tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty : USBO : arygon for the Arygon APPx/ADRx at /dev/ttyUSBO.

com:port :driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

udp[:host] [:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

6.2.2 snep-test-client.py

Usage

$ snep-test-client.py [-h|--help] [OPTION]...

Options

-t N, —-—test N
Run test number N. May be set more than once.

-T, ——test-all
Run all tests.

--loop,

-1

Repeat the command endlessly, use Control-C to abort.

——mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

——miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

6.2. Simple NDEF Exchange Protocol 55

nfcpy documentation, Release 1.0.4

——1lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

—-listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

—--no—-aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

—-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with —f£. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, —d nfc enables all nfcpy debug logs, —d nfc.tag enables debug logs for all tag
types, and —-d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

—f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless —q is set to supress info messages on <stderr>.

—-nolog-symm

When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.1llcp.
11c module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

——device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

* usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb: 054c: 06c3 would open the first Sony RC-S380 reader and usb: 054 c the first Sony reader.

* usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb: 001 would mean to use the first available reader on bus number 1.

* tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty : USBO : arygon for the Arygon APPx/ADRx at /dev/ttyUSBO.

e com:port :driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

* udp[:host] [:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

Test Scenarios

Connect and terminate

$ snep-test-client.py -t 1

Verify that a data link connection with the remote validation server can be established and terminated gracefully and
that the server returns to a connectable state.

56 Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

SAE U i

Establish a data link connection with the Validation Server.
Verify that the data link connection was established successfully.
Close the data link connection with the Validation Server.
Establish a new data link connection with the Validation Server.
Verify that the data link connection was established successfully.

Close the data link connection with the Validation Server.

Unfragmented message exchange

$ snep-test-client.py -t 2

Verify that the remote validation server is able to receive unfragmented SNEP messages.

1.

AN

Establish a data link connection with the Validation Server.
Send a Put request with an NDEF message of no more than 122 octets total length.
Verify that the Validation Server accepted the Put request.

Send a Get request that identifies the NDEF message sent in step 2 to be retrieved.

Verify that the retrieved NDEF message is identical to the one transmitted in step 2.

Close the data link connection.

Fragmented message exchange

$ snep-test-client.py -t 3

Verify that the remote validation server is able to receive fragmented SNEP messages.

1.

Establish a data link connection with the Validation Server.

2. Send a Put request with an NDEF message of more than 2170 octets total length.
3. Verify that the Validation Server accepted the Put request.

4,
5
6

Send a Get request that identifies the NDEF message sent in step 2 to be retrieved.

. Verify that the retrieved NDEF message is identical to the one transmitted in step 2.

. Close the data link connection.

Multiple ndef messages

$ snep-test-client.py -t 4

Verify that the remote validation server accepts more than a single NDEF message on the same data link connection.

1.

2. Send a Put request with an NDEF message that differs from the NDEF message to be send in step 3.

Establish a data link connection with the Validation Server.

3. Send a Put request with an NDEF message that differs from the NDEF message that has been send send in step

2.

6.2. Simple NDEF Exchange Protocol

57

nfcpy documentation, Release 1.0.4

4. Send a Get request that identifies the NDEF message sent in step 2 to be retrieved.

5.
6.
7.

Send a Get request that identifies the NDEF message sent in step 3 to be retrieved.
Verify that the retrieved NDEF messages are identical to the NDEF messages transmitted in steps 2 and 3.

Close the data link connection.

Undeliverable resource

$ snep-test-client.py -t 5

Verify verify that the remote validation server responds appropriately if the client requests an NDEF message that
exceeds the maximum acceptable length specified by the request.

1.

e

Establish a data link connection with the Validation Server.

2. Send a Put request with an NDEF message of total lenght N.
3.
4

Verify that the Validation Server accepted the Put request.

. Send a Get request with the maximum acceptable lenght field set to N / and an NDEF message that identifies

the NDEF message sent in step 2 to be retrieved.
Verify that the server replies with the appropriate response message.

Close the data link connection.

Unavailable resource

$ snep-test-client.py -t 6

Verify that the remote validation server responds appropriately if the client requests an NDEF message that is not
available.

1.
2.
3.
4,

Establish a data link connection with the Validation Server.
Send a Get request that identifies an arbitrary NDEF message to be retrieved.
Verify that the server replies with the appropriate response message.

Close the data link connection.

Default server limits

$ snep-test-client.py -t 7

Verify verify that the remote default server accepts a Put request with an information field of up to 1024 octets, and
that it rejects a Get request.

1.

Establish a data link connection with the Default Server.

. Send a Put request with an NDEF message of up to 1024 octets total length.

. Verify that the Default Server replies with a Success response message.

2
3
4,
5

Send a Get request with an NDEF message of arbitrary type and identifier.

. Verify that the Default Server replies with a Not Implemented response message.

58

Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

6. Close the data link connection.

6.3 Connection Handover

The handover-test-server.py and handover-test-client.py programs provide a test facility for the NFC Forum Con-
nection Handover 1.2 specification.

6.3.1 handover-test-server.py

Usage:

$ handover-test-server.py [-h|--help] [OPTION]... [CARRIER]...

The handover test server implements the handover selector role. A handover client can connect to the server with the
well-known service name urn:nfc:sn:handover and send handover request messages. The server replies with
handover select messages populated with carriers provided through CARRIER arguments and matching the a carrier in
the received handover request carrier list.

Each CARRIER argument must provide an NDEF message file, which may be a handover select message with one or
more alternative carriers (including auxiliary data) or an alternative carrier record optionally followed by one or more
auxiliary data records. Note that only the handover select message format allows to specify the carrier power state. All
carriers including power state information and auxiliary data records are accumulated into a list of selectable carriers,
ordered by argument position and carrier sequence within a handover select message.

Unless the ——skip—-local option is given, the server attempts to include carriers that are locally available on the
host device. Local carriers are always added after all CARRIER arguments.

Note: Local carrier detection currently requires a Linux OS with the bluez Bluetooth stack and D-Bus. This is true
for many Linux distributions, but has so far only be tested on Ubuntu.

Options:

—-skip-local
Skip the local carrier detection. Without this option the handover test server tries to discover locally available
carriers and consider them in the selection process. Local carriers are considered after all carriers provided
manually.

——-select NUM
Return at most NUM carriers with the handover select message. The default is to return all matching carriers.

——delay INT
Delay the handover response for the number of milliseconds specified as INT. The handover specification says
that the server should answer within 1 second and if it doesn’t the client may assume a processing error.

—--recv-miu INT
Set the maximum information unit size for inbound LLCP packets on the data link connection between the
server and the remote client. This value is transmitted with the CC PDU to the remote client.

—-recv-buf INT
Set the receive window size for inbound LLCP packets on the data link connection between the server and the
remote client. This value is transmitted with the CC PDU to the remote client.

——quirks
This option causes the handover test server to try support non-compliant implementations if possible and as
known. Currently implemented work-arounds are:

6.3. Connection Handover 59

nfcpy documentation, Release 1.0.4

* a ‘urn:nfc:sn:snep’ server is enabled and accepts the GET request with a handover request message that
was implemented in Android Jelly Bean

* the version of the handover request message sent by Android Jelly Bean is changed to 1.1 to accomodate
the missing collision resolution record that is required for version 1.2.

* the incorrect type-name-format encoding in handover carrier records sent by some Sony Xperia phones is
corrected to mime-type.

Test Scenarios

Empty handover select response

$ handover-test-server.py —--select 0

Verify that the remote handover client accepts a handover select message that has no alternative carriers.

A carrier that is being activated

$ ndeftool.py make btcfg 01:02:03:04:05:06 —-—-activating
—local -

handover-test-server —--skip-

Verify that the remote handover client understands and tries to connect to a Bluetooth carrier that is in the process of
activation.

Delayed handover select response

$ examples/handover-test-server.py —--delay 10000

Check hot the remote handover implementation behaves if the handover select response is delayed for about 10 sec-
onds. This test intends to help identify user interface issues.

6.3.2 handover-test-client.py

Usage

$ handover-test-client.py [-h|--help] [OPTION]... [CARRIER]...

The handover test client implements the handover requester role. The handover client connects to the remote server
with well-known service name urn:nfc:sn:handover and sends handover request messages populated with
carriers provided through one or more CARRIER arguments or implicitly if tests from the test suite are executed. The
client expects the server to reply with handover select messages that list carriers matching one or more of the carriers
sent with the handover request carrier list.

Each CARRIER argument must provide an NDEF message file which may be a handover message with one or more
alternative carriers (including auxiliary data) or an alternative carrier record followed by zero or more auxiliary data
records. Note that only the handover message format allows to specify the carrier power state. All carriers, including
power state information and auxiliary data records, are accumulated into a list of requestable carriers ordered by
argument position and carrier sequence within a handover message.

Options

60 Chapter 6. Interoperability Tests

urn:nfc:sn:snep

nfcpy documentation, Release 1.0.4

-t N, ——test N
Run test number N from the test suite. Multiple tests can be specified.

—--relax
The ——relax option affects how missing optional, but highly recommended, handover data is handled when
running test scenarios. Without ——relax any missing data is regarded as a test error that terminates test
execution. With the ——relax option set only a warning message is logged.

—-recv-miu INT
Set the maximum information unit size for inbound LLCP packets on the data link connection between the client
and the remote server. This value is transmitted with the CONNECT PDU to the remote server.

——recv-buf INT
Set the receive window size for inbound LLCP packets on the data link connection between the client and the
remote server. This value is transmitted with the CONNECT PDU to the remote server.

——quirks
This option causes the handover test client to try support non-compliant implementations as much as possible,
including and beyond the ——relax behavor. The modifications activated with ——quirks are:

» After test procedures are completed the client does not terminate the LLCP link but waits until the link is
disrupted to prevent the NFC stack segfault and recovery on pre 4.1 Android devices.

* Try sending the handover request message with a SNEP GET request to the remote default SNEP server if
the urn:nfc:sn:handover service is not available.

Test Scenarios

Presence and connectivity

$ handover-test-client.py -t 1

Verify that the remote device has the connection handover service active and that the client can open, close and re-open
a connection with the server.

1. Connect to the remote handover service.
2. Close the data link conection.
3. Connect to the remote handover service.

4. Close the data link conection.

Empty carrier list

$ handover-test-client.py -t 2

Verify that the handover server responds to a handover request without alternative carriers with a handover select
message that also has no alternative carriers.

1. Connect to the remote handover service.
2. Send a handover request message containing zero alternative carriers.

3. Verify that the server returns a handover select message within no more than 3 seconds; and that the message
contains zero alternative carriers.

4. Close the data link conection.

6.3. Connection Handover 61

nfcpy documentation, Release 1.0.4

Version handling

$ handover-test-client.py -t 3

Verify that the remote handover server handles historic and future handover request version numbers. This test is run
as a series of steps where for each step the connection to the server is established and closed after completion. For all
steps the configuration sent is a Bluetooth carrier for device address 01:02:03:04:05:06.

1.

e e e e

Y ® Nk w N

Connect to the remote handover service.

Send a handover request message with version 1. 2.
Verify that the server replies with version 1. 2.
Close the data link conection.

Connect to the remote handover service.

Send a handover request message with version 1. 1.
Verify that the server replies with version 1. 2.
Close the data link conection.

Connect to the remote handover service.

Send a handover request message with version 1.15.

. Verify that the server replies with version 1. 2.
. Close the data link conection.

. Connect to the remote handover service.

Send a handover request message with version 15 . 0.

. Verify that the server replies with version 1. 2.

. Close the data link conection.

Bluetooth just-works pairing

$ handover-test-client.py -t 4

Verify that the application/vnd.bluetooth.ep.oob alternative carrier is correctly evaluated and replied.
This test is only applicable if the peer device does have Bluetooth connectivity.

1.
2.

Connect to the remote handover service.

Send a handover request message with a single alternative carrier of type application/vnd.bluetooth.
ep.oob and power state active. Secure pairing hash and randomizer are not provided with the Bluetooth
configuration.

Verify that the server returns a handover select message within no more than 3 seconds; that the message
contains exactly one alternative carrier with type application/vnd.bluetooth.ep.oob and power
state active or activating; that the Bluetooth local device name is transmitted; and that secure simple
pairing hash and randomizer are not transmitted. Issues a warning if class of device/service or service class
UUID attributes are not transmitted.

Close the data link conection.

62

Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

Bluetooth secure pairing

$ handover-test-client.py -t 5

Verify that the application/vnd.bluetooth.ep.oob alternative carrier is correctly evaluated and replied.
This test is only applicable if the peer device does have Bluetooth connectivity.

1. Connect to the remote handover service.

2. Send a handover request message with a single alternative carrier of type application/vnd.bluetooth.
ep.oob and power state active. Secure pairing hash and randomizer are transmitted with the Bluetooth
configuration.

3. Verify that the server returns a handover select message within no more than 3 seconds; that the message
contains exactly one alternative carrier with type application/vnd.bluetooth.ep.oob and power
state active or activating; that the Bluetooth local device name is transmitted; and that secure simple
pairing hash and randomizer are transmitted. Issues a warning if class of device/service or service class UUID
attributes are not transmitted.

4. Close the data link conection.

Unknown carrier type

$ handover-test-client.py -t 6

Verify that the remote handover server returns a select message without alternative carriers if a single carrier of un-
known type was sent with the handover request.

1. Connect to the remote handover service.

2. Send a handover request message with a single alternative carrier of type urn:nfc:ext:nfcpy.
org:unknown—-carrier-type.

3. Verify that the server returns a handover select message with an empty alternative carrier selection.

4. Close the data link conection.

Two handover requests

$ handover-test-client.py -t 7

Verify that the remote handover server does not close the data link connection after the first handover request message.
1. Connect to the remote handover service.
2. Send a handover request with a single carrier of unknown type
3. Send a handover request with a single Bluetooth carrier

4. Close the data link conection.

Reserved-future-use check

$ handover-test-client.py -t 8

6.3. Connection Handover 63

nfcpy documentation, Release 1.0.4

Verify that reserved bits are set to zero and optional reserved bytes are not present in the payload of the alternative
carrier record. This test requires that the remote server selects a Bluetooth alternative carrier if present in the request.

1. Connect to the remote handover service.
2. Send a handover request with a single Bluetooth carrier

3. Verify that an alternative carrier record is present; that reserved bits in the first octet are zero; and that the record
payload ends with the last auxiliary data reference.

4. Close the data link conection.

Skip meaningless records

$ handover-test-client.py -t 9

Verify that records that have no defined meaning in the payload of a handover request record are ignored. This test
assumes that the remote server selects a Bluetooth alternative carrier if present in the request.

1. Connect to the remote handover service.

2. Send a handover request with a single Bluetooth carrier and a meaningless text record as the first record of the
handover request record payload.

3. Verify that an Bluetooth alternative carrier record is returned.

4. Close the data link conection.

6.4 Personal Health Device Communication

6.4.1 phdc-test-manager.py

This program implements an NFC device that provides a PHDC manager with the well-known ser-
vice name urn:nfc:sn:phdc and a non-standard PHDC manager with the experimental service name
urn:nfc:xsn:nfc-forum.org:phdc-validation.

Usage

$ phdc-test-manager.py [-h|--help] [OPTION]...

Options

——loop, -1
Repeat the command endlessly, use Control-C to abort.

—-mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

—-miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

——lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

——listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

64 Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

——no—aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

--wait
After reading or writing a tag, wait until it is removed before returning. This option is implicit when the option
——loop is set.

--technology {A,B,F}
Poll only for tags of a specific technology. The technologies NFC-A, NFC-B, and NFC-F are defined in the
NFC Forum Digital Specification. The technology indicator is case insensitive. The default is to poll for all

technologies.

-q
Do not print log messages except for errors and warnings.

—-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with —f£. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, —d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and —d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

—f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless —q is set to supress info messages on <stderr>.

—--nolog-symm

When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.11lcp.
11c module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

——-device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

e usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb: 054c: 06c3 would open the first Sony RC-S380 reader and usb: 054 c the first Sony reader.

e usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb: 001 would mean to use the first available reader on bus number 1.

* tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty : USBO : arygon for the Arygon APPx/ADRX at /dev/ttyUSRO.

e com:port :driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

* udp[:host] [:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

6.4.2 phdc-test-agent.py p2p

Usage

$ phdc-test-agent.py p2p [-h|--help] [OPTION]...

6.4. Personal Health Device Communication 65

nfcpy documentation, Release 1.0.4

Options

-t N, ——-test N
Run test number N. May be set more than once.

-T, ——test-all
Run all tests.

—-=loop, -1
Repeat the command endlessly, use Control-C to abort.

——mode {t,i}
Restrict the choice of NFC-DEP connection setup role to either Target (only listen) or Initiator (only
poll). If this option is not given the dafault is to alternate between both roles with a randomized listen time.

——miu INT
Set a specific value for the LLCP Link MIU. The dafault value is 2175 octets.

——l1lto INT
Set a specific LLCP Link Timeout value. The default link timeout is 500 milliseconds.

—-listen-time INT
Set the time to listen for initialization command from an NFC-DEP Initiator. The default listen time is 250
milliseconds.

——-no—aggregation
Disable outbound packet aggregation for LLCP, i.e. do not generate LLCP AGF PDUs if multiple packets are
waiting to be send. This is mostly to achieve communication with some older/buggy implementations.

-q
Do not print log messages except for errors and warnings.

—-d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with —£. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, —d nfc enables all nfcpy debug logs, —d nfc.tag enables debug logs for all tag
types, and -d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

—f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless —q is set to supress info messages on <stderr>.

——nolog—-symm

When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.1llcp.
11c module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

——device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

* usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb: 054 c the first Sony reader.

* usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb: 001 would mean to use the first available reader on bus number 1.

* tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty : USBO : arygon for the Arygon APPx/ADRx at /dev/ttyUSBO.

66 Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

* com:port :driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

e udp[:host] [:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’” and port
defaults to 54321.

Test Scenarios

Connect, Associate and Release

$ phdc-test-agent.py p2p -t 1

Verify that the Agent can connect to the PHDC Manager, associate with the IEEE Manager and finally release the
association.

1.

® N A »N

Establish communication distance between the Thermometer Peer Agent and the Manager device.
Connect to the urn:nfc:sn:phdc service.

Send a Thermometer Association Request.

Verify that the Manager sends a Thermometer Association Response.

Wait 3 seconds not sending any IEEE APDU, then send an Association Release Request.

Verify that the Manager sends an Association Release Response

Disconnect from the urn:nfc: sn:phdc service.

Move Agent and Manager device out of communication range.

Association after Release

$ phdc-test-agent.py p2p -t 2

Verify that the Agent can again associate with the Manager after a first association has been established and released.

1.

Establish communication distance between the Thermometer Peer Agent and the Manager device.

. Connect to the urn:nfc: sn:phdc service.
. Send a Thermometer Association Request.
. Verify that the Manager sends a Thermometer Association Response.

2
3
4
5.
6
7
8
9

Disconnect from the urn:nfc:sn:phdc service.

. Connect to the urn:nfc:sn:phdc service.

. Send a Thermometer Association Request.

. Verify that the Manager sends a Thermometer Association Response.
. Send a Association Release Request.

10.
11.
12.

Verify that the Manager sends a Association Release Response.
Disconnect from the urn:nfc: sn:phdc service.

Move Agent and Manager device out of communication range.

6.4.

Personal Health Device Communication 67

nfcpy documentation, Release 1.0.4

PHDC PDU Fragmentation and Reassembly

$ phdc-test-agent.py p2p -t 3

Verify that large PHDC PDUs are correctly fragmented and reassembled.

1. Establish communication distance between the Validation Agent and the Manager device.
Connect to the urn:nfc:xsn:nfc-forum.org:phdc-validation service.
Send a PHDC PDU with an Information field of 2176 random octets.

Verify to receive an PHDC PDU that contains the same random octets in reversed order.

Disconnect from the urn:nfc:xsn:nfc-forum.org:phdc-validation service.

AN

Move Agent and Manager device out of communication range.

6.4.3 phdc-test-agent.py tag

Usage

$ phdc-test-agent.py tag [-h|--help] [OPTION]...

Options

-t N, ——test N
Run test number N. May be set more than once.

-T, —-test-all
Run all tests.

——loop, -1
Repeat the command endlessly, use Control-C to abort.

-q
Do not print log messages except for errors and warnings.

—d MODULE
Output debug messages for MODULE to the log facility. Logs are written to <stderr> unless a log file is set
with —£. MODULE is a string that corresponds to an nfcpy module or individual file, with dots between path
components. For example, —d nfc enables all nfcpy debug logs, -d nfc.tag enables debug logs for all tag
types, and —-d nfc.tag.tt3 enables debug logs only for type 3 tags. This option may be given multiple
times to enable debug logs for several modules.

—f LOGFILE
Write debug log messages to <LOGFILE> instead of <stderr>. Info, warning and error logs will still be printed
to <stderr> unless —q is set to supress info messages on <stderr>.

——nolog—-symm
When operating in peer mode this option prevents logging of LLCP Symmetry PDUs from the nfc.1llcp.
11c module. Symmetry PDUs are exchanged regularly and quite frequently over an LLCP Link and are logged
by default if debug output is enabled for the llcp module.

——device PATH
Use a specific reader or search only for a subset of readers. The syntax for PATH is:

* usb[:vendor[:product]] with optional vendor and product as four digit hexadecimal numbers,
like usb:054c:06c3 would open the first Sony RC-S380 reader and usb: 054 c the first Sony reader.

68 Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

* usb[:bus[:device]] with optional bus and device number as three-digit decimal numbers, like
usb:001:023 would specifically mean the usb device with bus number 1 and device id 23 whereas
usb: 001 would mean to use the first available reader on bus number 1.

* tty:port:driver with mandatory port and driver name should be used on Posix systems to open the
serial port at device node /dev/tty<port> and load the driver from module nfc/dev/<driver>.
py. A typical example would be tty : USBO : arygon for the Arygon APPx/ADRx at /dev/ttyUSBO.

e com:port:driver with mandatory port and driver name should be used on Windows systems to open
the serial port COM<port> and load the nfc/dev/<driver>.py driver module.

e udp[:host] [:port] with optional host name or address and port number will use a fake communica-
tion channel over UDP/IP. Either value may be omitted in which case host defaults to ‘localhost’ and port
defaults to 54321.

Test Scenarios

Discovery, Association and Release

$ phdc-test-agent.py tag -t 1

Verify that a PHDC Tag Agent is discovered by a PHDC Manager and IEEE APDU exchange is successful.

1.

AN

Establish communication distance between the Thermometer Tag Agent and the Manager.
Send a Thermometer Association Request.

Verify that the Manager sends a Thermometer Association Response.

Wait 3 seconds not sending any IEEE APDU, then send an Association Release Request.
Verify that the Manager sends a Association Release Response.

Move Thermometer Tag Agent and Manager out of communication range.

Association after Release

$ phdc-test-agent.py tag -t 2

Verify that a Tag Agent can again associate with the Manager after a first association has been established and released.

1.

Establish communication distance between the Thermometer Tag Agent and the Manager.

. Send a Thermometer Association Request.
. Verify that the Manager sends a Thermometer Association Response.
. Send an Association Release Request.

2
3
4
5.
6
7
8

Verify that the Manager sends a Association Release Response.

. Wait 3 seconds not sending any IEEE APDU, then send a Thermometer Association Request.
. Verify that the Manager sends a Thermometer Association Response.

. Move Thermometer Tag Agent and Manager out of communication range.

6.4.

Personal Health Device Communication 69

nfcpy documentation, Release 1.0.4

Activation with invalid settings

$ phdc-test-agent.py tag -t 3

Verify that a PHDC Manager refuses communication with a Tag Agent that presents an invalid PHDC record payload
during activation.

1. Establish communication distance between the Tag Agent and the Manager.
2. Send the first PHDC PDU with invalid settings in one or any of the MC, LC or MD fields.

3. Verify that the Manager stops further PHDC communication with the Tag Agent.

Activation with invalid RFU value

$ phdc-test-agent.py tag -t 4

Verify that a PHDC Manager communicates with a Tag Agent that presents a PHDC record payload with an invalid
RFU value during activation.

1. Establish communication distance between the Tag Agent and the Manager.
2. Send the first PHDC PDU with an invalid value in the RFU field.

3. Verify that the Manager continues PHDC communication with the Tag Agent.

6.5 Generate Test Tags

This page contains instructions to generate tags for testing reader compliance with NFC Forum Tag Type, NDEF and
RTD specifications. The tools used are in the examples directory.

6.5.1 Type 3 Tags
Attribute Block Tests

This is a collection of tags to test processing of the the Type 3 Tag attribute information block. These can be used
to verify if the NFC device correctly reads or writes tags with different attribute information, both valid and invalid.
Below figure (from the NFC Forum Type 3 Tag Operation Specification) shows the Attribute Information Format.

User Block No.00

Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ver Nbr | Nbw Nmaxh unused |unused | unused [unused | WriteF ;r.g Ln Checksum

TT3_READ_BV_001

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy,,
—documentation hosted on readthedocs" | ./tagtool.py load -

$./tagtool.py format tt3 —--len 80 —--max 5 ——rw 0

70 Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

e Settings: Len = Nmaxb * 16, RWFlag = 0x00
» Expected: Fully used tag. Read all data stored (Len)

TT3_READ_BV_002

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
—" | ./tagtool.py load -

$./tagtool.py format tt3 --len 58 —-rw 0 —-nbr 1

e Settings: Nbr = 1, RWFlag = 0x00
» Expected: Identify as ,,Read Only* (normal read-only tag, read only 1 block at a time)

TT3_READ_BV_003

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
—" | ./tagtool.py load -

$./tagtool.py format tt3 --len 58 —--rw 0 —-max 3

e Nbr > Nbmax, RWFlag = 0x00
¢ Read Nbmax blocks (NOT read Nbr blocks)

TT3_READ_BV_004

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
—" | ./tagtool.py load -

$./tagtool.py format tt3 —--len 58 —--rw 0 —-wf 15

* WriteFlag = 0xOF, RWFlag = 0x00

¢ Identify as ,,corrupted data* (previous write interrupted)

TT3_READ_BV_005

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
—" | ./tagtool.py load -

$./tagtool.py format tt3 --len 58 --rw 0 —--max 3

e Nmaxb * 16 < Len, RWFlag = 0x00
¢ Identify as ,,Corrupted data“ (invalid length)

TT3_READ_BV_006

6.5. Generate Test Tags 71

nfcpy documentation, Release 1.0.4

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t “python -c
—'print (810x"nfcpy")'" | ./tagtool.py load -

$./tagtool.py format tt3 --len 4495 —-rw O

e Nmaxb > 255, Len > 255, RWFlag = 0x00
* Read all data. Identify as ,,Read Only*. Write prohibited. (normal read-only tag)
* Requires a tag with more than 4 kbyte NDEF capacity

TT3_READ_BI_001

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
—" | ./tagtool.py load -

$./tagtool.py format tt3 —--len 58 —-rw 0 —-nbr 0 —--nbw 0

e Nbr =0, Nbw =0, RWFlag = 0x00

¢ Identify as ,,Corrupted data“ (invalid attribute information block)

TT3_READ_BI_002

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
—" | ./tagtool.py load -

$./tagtool.py format tt3 —--len 58 —-rw 0 —-crc 4660

¢ Checksum invalid, RWFlag = 0x00

¢ Identify as ,,Corrupted data“ (invalid attribute information block)

TT3_READ_BI_003

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
—" | ./tagtool.py load -

$./tagtool.py format tt3 —--len 58 ——-rw 0 —-ver 2.0

* Version = 2.0, RWFlag = 0x00

¢ Identify as unknown version

TT3_READ_BI_004

$./tagtool.py format

$./ndeftool.py make smartposter http://nfcpy.readthedocs.org/ -t "nfcpy documentation
—" | ./tagtool.py load -

$./tagtool.py format tt3 --len 58 —-rw 0 —-rfu 255

¢ All unused bytes in attribute block = OxFF

72 Chapter 6. Interoperability Tests

nfcpy documentation, Release 1.0.4

* Ignore when reading RWFlag = 0x00

TT3_WRITE_BV_001

$./tagtool.py format tt3 —-rw O

¢ RWFlag = 0x00, no content
* Identify as ,,Read Only*. Write prohibited. (normal read-only tag)

TT3_WRITE_BV_002

$./tagtool.py format tt3 —-rw 1

¢ RWFlag = 0x01, no content

* Identify as ,,Read/Write*. Write permitted. (normal writtable tag)

TT3_WRITE_BV_003

$./tagtool.py format tt3 —--rw 0 —-max 4

¢ Nbw > Nbmax, RWFlag = 0x01
¢ Write Nbmax blocks (not write Nbw blocks)

6.5. Generate Test Tags 73

nfcpy documentation, Release 1.0.4

74

Chapter 6. Interoperability Tests

CHAPTER /

Module Reference

7.1 nfc

7.1.1 nfc.ContactlessFrontend

class nfc.ContactlessFrontend

Shorthand for nfc.clf.ContactlessFrontend.

7.2 nfc.clf

* Contactless Frontend
» Technology Types
* Exceptions
* Driver Interface
* Device Drivers

- res380

— pn531

- pn532
pns33
rcs956
acrl2?2

— udp

75

nfcpy documentation, Release 1.0.4

class nfc.clf.ContactlessFrontend (path=None)

Bases: object

This class is the main interface for working with contactless devices. The connect () method provides easy
access to the contactless functionality through automated discovery of remote cards and devices and activation
of appropiate upper level protocols for further interaction. The sense (), listen () and exchange ()
methods provide a low-level interface for more specialized tasks.

An instance of the ContactlessFrontend class manages a single contactless device locally connect
through either USB, TTY or COM port. A special UDP port driver allows for emulation of a contactless
device that connects through UDP to another emulated contactless device for test and development of higher
layer functions.

A locally connected contactless device can be opened by either supplying a path argument when an an instance
of the contactless frontend class is created or by calling open () at a later time. In either case the path argument
must be constructed as described in open () and the same exceptions may occur. The difference is that open ()
returns False if a device could not be found whereas the initialization method raises TOError with errno.
ENODEV.

The methods of the ContactlessFrontend class are thread-safe.

open (path)
Open a contactless reader identified by the search path.

The open () method searches and then opens a contactless reader device for further communication. The
path argument can be flexibly constructed to identify more or less precisely the device to open. A path that
only partially identifies a device is completed by search. The first device that is found and successfully
opened causes open () to return True. If no device is found return value is False. If a device was found
but could not be opened then open () returns False if path was partial or raise IOError if path was fully
qualified. Typical I/O error reasons are errno.EACCES if the calling process has insufficient access
rights or errno . EBUSY if the device is used by another process.

A path is constructed as follows:
usb [:vendor[:product]]

with optional vendor and product as four digit hexadecimal numbers. For example,
usb:054c:06c3 would open the first Sony RC-S380 reader while usb:054c would open
the first Sony reader found on USB.

usb[:bus[:device]]

with optional bus and device number as three-digit decimals. For example, usb:001:023
would open the device enumerated as number 23 on bus 1 while usb: 001 would open the first
device found on bust 1. Note that a new device number is generated every time the device is
plugged into USB. Bus and device numbers are shown by 1susb.

tty:port:driver

with mandatory port and driver name. This is for Posix systems to open the serial port /dev/
tty<port> and use the driver module nfc/dev/<driver>.py for access. For example,
tty:USBO:arygon would open /dev/ttyUSBO and load the Arygon APPx/ADRXx driver.

com:port:driver

with mandatory port and driver name. This is for Windows systems to open the serial port
COM<port> and use the driver module nfc/dev/<driver>.py for access.

udp[:host] [:port]

with optional host name or address and port number. This will emulate a communication channel
over UDP/IP. The defaults for host and port are 1ocalhost :54321.

76

Chapter 7. Module Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/errno.html#errno.ENODEV
https://docs.python.org/3/library/errno.html#errno.ENODEV
https://docs.python.org/3/library/errno.html#errno.EACCES
https://docs.python.org/3/library/errno.html#errno.EBUSY

nfcpy documentation, Release 1.0.4

close ()
Close the contacless reader device.

connect (**options)
Connect with a Target or Initiator

The calling thread is blocked until a single activation and deactivation has completed or a callback func-
tion supplied as the keyword argument terminate returns a true value. The example below makes
connect () return after 5 seconds, regardless of whether a peer device was connected or not.

>>> import nfc, time

>>> clf = nfc.ContactlessFrontend('usb')

>>> afterSs lambda: time.time() - started > 5

>>> started time.time(); clf.connect (llcp={}, terminate=after5s)

Connect options are given as keyword arguments with dictionary values. Possible options are:

e rdwr={key: wvalue, ...} -options for reader/writer

e llcp={key: wvalue, ...} -options for peer to peer

e card={key: wvalue, ...} -options forcard emulation
Reader/Writer Options

‘targets’ [iterable] A list of bitrate and technology type strings that will produce the RemoteTarget
objects to discover. The defaultis ('106A', '106B', '212F').

‘on-startup’ [function(targets)] This function is called before any attempt to discover a remote card. The
targets argument provides a list of RemoteTarget objects prepared from the ‘targets’ bitrate and
technology type strings. The function must return a list of of those RemoteTarget objects that shall
be finally used for discovery, those targets may have additional attributes. An empty list or anything
else that evaluates false will remove the ‘rdwr’ option completely.

‘on-discover’ [function(target)] This function is called when a RemoteTarget has been discovered.
The target argument contains the technology type specific discovery responses and should be evalu-
ated for multi-protocol support. The target will be further activated only if this function returns a true
value. The default function depends on the ‘llcp’ option, if present then the function returns True only
if the target does not indicate peer to peer protocol support, otherwise it returns True for all targets.

‘on-connect’ [function(tag)] This function is called when a remote tag has been activated. The rag ar-
gument is an instance of class nfc. tag. Tag and can be used for tag reading and writing within
the callback or in a separate thread. Any true return value instructs connect () to wait until the
tag is no longer present and then return True, any false return value implies immediate return of the
nfc.tag. Tag object.

‘on-release’ [function(tag)] This function is called when the presence check was run (the ‘on-connect’
function returned a true value) and determined that communication with the tag has become impos-
sible, or when the ‘terminate’ function returned a true value. The fag object may be used for cleanup
actions but not for communication.

‘iterations’ [integer] This determines the number of sense cycles performed between calls to the terminate
function. Each iteration searches once for all specified targets. The default value is 5 iterations and
between each iteration is a waiting time determined by the ‘interval’ option described below. As an
effect of math there will be no waiting time if iterations is set to 1.

‘interval’ [float] This determines the waiting time between iterations. The default value of 0.5 seconds
is considered a sensible tradeoff between responsiveness in terms of tag discovery and power con-
sumption. It should be clear that changing this value will impair one or the other. There is no free
beer.

7.2. nfc.clf 77

nfcpy documentation, Release 1.0.4

‘beep-on-connect’: boolean If the device supports beeping or flashing an LED, automatically perform

this functionality when a tag is successfully detected AND the ‘on-connect’ function returns a true
value. Defaults to True.

def

}

import nfc

on_startup (targets) :
for target in targets:

target.sensf_req = bytearray.fromhex ("0012FC0000")
return targets

def on_connect (tag) :
print (tag)

rdwr_options = {
'targets': ['212F', '424F'],
'on-startup': on_startup,
'on—-connect': on_connect,

with nfc.ContactlessFrontend('usb') as clf:

tag = clf.connect (rdwr=rdwr_options)
if tag.ndef:
print (tag.ndef.message.pretty())

Peer To Peer Options

‘on-startup’ [function(llc)] This function is called before any attempt to establish peer to peer commu-

nication. The llc argument provides the LogicallLinkController that may be used to allocate
and bind listen sockets for local services. The function should return the /lc object if activation shall
continue. Any other value removes the ‘llcp’ option.

‘on-connect’ [function(llc)] This function is called when peer to peer communication is successfully es-

tablished. The /lc argument provides the now activated LogicallLinkController ready for
allocation of client communication sockets and data exchange in separate work threads. The func-
tion should a true value return more or less immediately, unless it wishes to handle the logical link
controller run loop by itself and anytime later return a false value.

‘on-release’ [function(llc)] This function is called when the symmetry loop was run (the ‘on-connect’

function returned a true value) and determined that communication with the remote peer has become
impossible, or when the ‘terminate’ function returned a true value. The llc object may be used for
cleanup actions but not for communication.

‘role’ [string] This attribute determines whether the local device will restrict itself to either

'"initiator' or 'target' mode of operation. As Initiator the local device will try to discover a
remote device. As Target it waits for being discovered. The default is to alternate between both roles.

‘miu’ [integer]| This attribute sets the maximum information unit size that is announced to the remote

‘Ito’

device during link activation. The default and also smallest possible value is 128 bytes.

[integer] This attribute sets the link timeout value (given in milliseconds) that is announced to the
remote device during link activation. It informs the remote device that if the local device does not
return a protocol data unit before the timeout expires, the communication link is broken and can not
be recovered. The lto is an important part of the user experience, it ultimately tells when the user
should no longer expect communication to continue. The default value is 500 millisecond.

‘agf’ [boolean] Some early phone implementations did not properly handle aggregated protocol data units.

This attribute allows to disable the use af aggregation at the cost of efficiency. Aggregation is disabled
with a false value. The default is to use aggregation.

78

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

‘brs’ [integer] For the local device in Initiator role the bit rate selector determines the the bitrate to nego-
tiate with the remote Target. The value may be 0, 1, or 2 for 106, 212, or 424 kbps, respectively. The

default is to negotiate 424 kbps.

‘acm’ [boolean] For the local device in Initiator role this attribute determines whether a remote Target may
also be activated in active communication mode. In active communication mode both peer devices

mutually generate a radio field when sending. The default is to use passive communication mode.

‘rwt’ [float] For the local device in Target role this attribute sets the response waiting time announced
during link activation. The response waiting time is a medium access layer (NFC-DEP) value that
indicates when the remote Initiator shall attempt error recovery after missing a Target response. The
value is the waiting time index wt that determines the effective response waiting time by the formula
rwt = 4096/13.56E6 » pow (2, wt). The value shall not be greater than 14. The default

value is 8 and yields an effective response waiting time of 77.33 ms.

‘Iri’ [integer] For the local device in Initiator role this attribute sets the length reduction for medium access
layer (NFC-DEP) information frames. The value may be 0, 1, 2, or 3 for a maximum payload size of

64, 128, 192, or 254 bytes, respectively. The default value is 3.

‘Irt’ [integer] For the local device in Target role this attribute sets the length reduction for medium access
layer (NFC-DEP) information frames. The value may be 0, 1, 2, or 3 for a maximum payload size of

64, 128, 192, or 254 bytes, respectively. The default value is 3.

import nfc
import nfc.llcp
import threading

def server (socket) :
message, address = socket.recvfrom()
socket.sendto("It's me!", address)
socket.close ()

def client (socket) :
socket.sendto ("Hi there!", address=32)
socket.close ()

def on_startup(llc):
socket = nfc.llcp.Socket (1llc, nfc.llcp.LOGICAL_DATA_LINK)
socket .bind (address=32)
threading.Thread (target=server, args=(socket,)).start()
return llc

def on_connect (1llc):
socket = nfc.llcp.Socket (1llc, nfc.llcp.LOGICAL_DATA_LINK)
threading.Thread (target=client, args=(socket,)) .start()
return True

llcp_options = {
'on-startup': on_startup,
'on—-connect': on_connect,
}
with nfc.ContactlessFrontend('usb') as clf:
clf.connect (llcp=llcp_options)
print ("link terminated")

Card Emulation Options

‘on-startup’ [function(target)] This function is called to prepare a local target for discovery. The input
argument is a fresh instance of an unspecific LocalTarget that can be set to the desired bitrate

7.2. nfc.clf

79

nfcpy documentation, Release 1.0.4

and modulation type and populated with the type specific discovery responses (see 1isten () for
response data that is needed). The fully specified target object must then be returned.

‘on-discover’ [function(target)] This function is called when the LocalTarget has been discovered.

The target argument contains the technology type specific discovery commands. The target will be
further activated only if this function returns a true value. The default function always returns True.

‘on-connect’ [function(tag)] This function is called when the local target was discovered and a nfc.

tag.TagEmulation object successfully initialized. The function receives the emulated fag object
which stores the first command received after inialization as tag. cmd. The function should return a
true value if the tag.process_command() and tag.send_response() methods shall be called repeatedly
until either the remote device terminates communication or the ‘terminate’ function returns a true
value. The function should return a false value if the connect () method shall return immediately
with the emulated tag object.

‘on-release’ [function(tag)] This function is called when the Target was released by the Initiator or simply

moved away, or if the terminate callback function has returned a true value. The emulated fag object
may be used for cleanup actions but not for communication.

def

def

def

}

import nfc

on_startup (target) :

idm = bytearray.fromhex ("01010501b00ac30b")
pmm = bytearray.fromhex ("03014b024£4993ff")
sys = bytearray.fromhex ("1234")

target.brty = "212F"

target.sensf_res = chr(l) + idm + pmm + sys
return target

on_connect (tag) :
print ("discovered by remote reader")
return True

on_release(tag):
print ("remote reader is gone")
return True

card_options = {
'on-startup': on_startup,
'on-connect': on_connect,
'on-release': on_release,

with nfc.ContactlessFrontend('usb') as clf:

clf.connect (card=card_options)

Return Value

The

connect () method returns None if there were no options left after the ‘on-startup’ functions have

been executed or when the ‘terminate’ function returned a true value. It returns False when terminated by
any of the following exceptions: KeyboardInterrupt, IOError, UnsupportedTargetError.

The

connect () method returns a Tag, LogicallLinkController, or TagEmulation object if

the associated ‘on-connect’ function returned a false value to indicate that it will handle presence check,
peer to peer symmetry loop, or command/response processing by itself.

sense (*targets, **options)
Discover a contactless card or listening device.

Note: The sense () method is intended for experts with a good understanding of the commands and

80

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

responses exchanged during target activation (the notion used for commands and responses follows the
NFC Forum Digital Specification). If the greater level of control is not needed it is recommended to use
the connect () method.

All positional arguments build the list of potential fargets to discover and must be of type
RemoteTarget. Keyword argument options may be the number of iterations of the sense loop
set by targets and the interval between iterations. The return value is either a RemoteTarget in-
stance or None.

>>> import nfc, nfc.clf

>>> from binascii import hexlify

>>> clf = nfc.ContactlessFrontend ("usb")

>>> targetl = nfc.clf.RemoteTarget ("106A™)

>>> target2 = nfc.clf.RemoteTarget ("212F")

>>> print (clf.sense(targetl, target2, iterations=5, interval=0.2))
106A (sdd_res=04497622D93881, sel_res=00, sens_res=4400)

A Type A Target is specified with the technology letter A following the bitrate to be used for the
SENS_REQ command (almost always must the bitrate be 106 kbps). To discover only a specific Type
A target, the NFCID1 (UID) can be set with a 4, 7, or 10 byte sel_req attribute (cascade tags are
handled internally).

>>> target = nfc.clf.RemoteTarget ("106A")

>>> print (clf.sense(target))

106A sdd_res=04497622D93881 sel_res=00 sens_res=4400
>>> target.sel_req = bytearray.fromhex ("04497622D93881")
>>> print (clf.sense(target))

106A sdd_res=04497622D93881 sel_res=00 sens_res=4400
>>> target.sel_reqg = bytearray.fromhex ("04497622")

>>> print (clf.sense(target))

None

A Type B Target is specified with the technology letter B following the bitrate to be used for the
SENSB_REQ command (almost always must the bitrate be 106 kbps). A specific application family
identifier can be set with the first byte of a sensb_req attribute (the second byte PARAM is ignored
when it can not be set to local device, O0h is a safe value in all cases).

>>> target = nfc.clf.RemoteTarget ("106B")

>>> print (clf.sense (target))

106B sens_res=50E5DD3DC900000011008185

>>> target.sensb_req = bytearray.fromhex ("0000")
>>> print (clf.sense (target))

106B sens_res=50E5DD3DC900000011008185

>>> target.sensb_req = bytearray.fromhex ("FF00")
>>> print (clf.sense (target))
None

A Type F Target is specified with the technology letter F following the bitrate to be used for the
SENSF_REQ command (the typically supported bitrates are 212 and 424 kbps). The default SENSF_REQ
command allows all targets to answer, requests system code information, and selects a single time slot for
the SENSF_RES response. This can be changed with the sensf_req attribute.

>>> target = nfc.clf.RemoteTarget ("212F")

>>> print (clf.sense (target))

212F sensf_res=0101010601BO0OADEOBO3014B024F4993FF12FC
>>> target.sensf_req = bytearray.fromhex ("0012FC0000™)

(continues on next page)

7.2. nfc.clf 81

nfcpy documentation, Release 1.0.4

(continued from previous page)

>>> print (clf.sense(target))

212F sensf_res=0101010601BOOADEOBO3014B024F4993FF

>>> target.sensf_req = bytearray.fromhex ("00ABCDOO0OO™)
>>> print (clf.sense(target))

None

An Active Communication Mode P2P Target search is selected with an at r_req attribute. The choice
of bitrate and modulation type is 106A, 212F, and 424F.

>>> atr = bytearray.fromhex ("D4000102030405060708091000000030™")

>>> target = clf.sense(nfc.clf.RemoteTarget ("106A", atr_reg=atr))
>>> if target and target.atr_res:

>>> print (hexlify (target.atr_res) .decode())
d501c023caebb3182afe3dee0000000e3246666d01011103020013040196

>>> target = clf.sense(nfc.clf.RemoteTarget ("424F", atr_reg=atr))
>>> if target and target.atr_res:

>>> print (hexlify (target.atr_res) .decode())

d501dc0104£04584e15769700000000e3246666d01011103020013040196

Some drivers must modify the ATR_REQ to cope with hardware limitations, for example change length
reduction value to reduce the maximum size of target responses. The ATR_REQ that has been send is
given by the at r_req attribute of the returned RemoteTarget object.

A Passive Communication Mode P2P Target responds to 106A discovery with bit 6 of SEL_RES set
to 1, and to 212F/424F discovery (when the request code RC is 0 in the SENSF_REQ command) with
an NFCID?2 that starts with 01FEh in the SENSF_RES response. Responses below are from a Nexus 5
configured for NFC-DEP Protocol (SEL_RES bit 6 is set) and Type 4A Tag (SEL_RES bit 5 is set).

>>> print (clf.sense(nfc.clf.RemoteTarget ("106A")))

106A sdd_res=08796BEB sel_res=60 sens_res=0400

>>> sensf_req = bytearray.fromhex ("OOFFFF0000")

>>> print (clf.sense(nfc.clf.RemoteTarget ("424F", sensf_reg=sensf_req)))
424F sensf_res=0101FE1444EFB88FD50000000000000000

Errors found in the rargets argument list raise exceptions only if exactly one target is given. If multiple
targets are provided, any target that is not supported or has invalid attributes is just ignored (but is logged
as a debug message).

Exceptions

e TO0Error (ENODEV) when a local contacless communication device has not been opened or com-
munication with the local device is no longer possible.

e nfc.clf.UnsupportedTargetError if the single target supplied as input is not supported by
the active driver. This exception is never raised when sense () is called with multiple targets, those
unsupported are then silently ignored.

listen (target, timeout)

Listen timeout seconds to become activated as target.

Note: The 1isten () method is intended for experts with a good understanding of the commands and
responses exchanged during target activation (the notion used for commands and responses follows the
NFC Forum Digital Specification). If the greater level of control is not needed it is recommended to use
the connect () method.

The target argument is a LocalTarget object that provides bitrate, technology type and response

82

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

data attributes. The return value is either a LocalTarget object with bitrate, technology type and
request/response data attributes or None.

An P2P Target is selected when the at r_res attribute is set. The bitrate and technology type are decided
by the Initiator and do not need to be specified. The sens_res, sdd_res and sel_res attributes for
Type A technology as well as the sensf_res attribute for Type F technolgy must all be set.

When activated, the bitrate and type are set to the current communication values, the at r_req attribute
contains the ATR_REQ received from the Initiator and the dep_ req attribute contains the first DEP_REQ
received after activation. If the Initiator has changed communication parameters, the ps1_req attribute
holds the PSL_REQ that was received. The atr_res (and the ps1_res if transmitted) are also made
available.

If the local target was activated in passive communication mode either the Type A response (sens_res,
sdd_res, sel_res) or Type F response (sensf_res) attributes will be present.

With a Nexus 5 on a reader connected via USB the following code should be working and produce similar
output (the Nexus 5 prioritizes active communication mode):

>>> import nfc, nfc.clf

>>> clf = nfc.ContactlessFrontend("usb")

>>> atr_res = "d50101fe01020304050607080000000832466664010110"
>>> target = nfc.clf.LocalTarget ()

>>> target.sensf_res = bytearray.fromhex ("OL01FE"+16+"FE")
>>> target.sens_res = bytearray.fromhex ("0101™)

>>> target.sdd_res = bytearray.fromhex ("08010203")

>>> target.sel_res = bytearray.fromhex ("40")

>>> target.atr_res = bytearray.fromhex (atr_res)

>>> print (clf.listen(target, timeout=2.5))

424F atr_res=D50101FE0102030405060708000000083246666D010110

A Type A Target is selected when at r_res is not present and the technology type is A. The bitrate should
be set to 106 kbps, even if a driver supports higher bitrates they would need to be set after activation. The
sens_res, sdd_res and sel_res attributes must all be provided.

>>> target = nfc.clf.Localtarget ("106A")

>>> target.sens_res = bytearray.fromhex ("0101"))

>>> target.sdd_res = bytearray.fromhex ("08010203")

>>> target.sel_res = bytearray.fromhex ("00")

>>> print (clf.listen(target, timeout=2.5))

106A sdd_res=08010203 sel_res=00 sens_res=0101 tt2_cmd=3000

A Type B Target is selected when atr_res is not present and the technology type is B. Unfor-
tunately none of the supported devices supports Type B technology for listen and an nfc.clf.
UnsupportedTargetError exception will be the only result.

>>> target = nfc.clf.LocalTarget ("106B")
>>> try: clf.listen(target, 2.5)
except nfc.clf.UnsupportedTargetError: print ("sorry")

sorry

A Type F Target is selected when atr_res is not present and the technology type is F. The bitrate may
be 212 or 424 kbps. The sensf_res attribute must be provided.

>>> idm, pmm, sys = "02FE010203040506", "FFFFFFFFFFFFFFFF", "12FC"
>>> target = nfc.clf.LocalTarget ("212F")
>>> target.sensf_res = bytearray.fromhex("01l" + idm + pmm + sys)

(continues on next page)

7.2. nfc.clf 83

nfcpy documentation, Release 1.0.4

(continued from previous page)

>>> print(clf.listen(target, 2.5))
212F sensf_reg=00FFFF0003 tt3_cmd=0CO02FE010203040506

Exceptions

e TOError (ENODEV) when a local contacless communication device has not been opened or com-
munication with the local device is no longer possible.

e nfc.clf.UnsupportedTargetError if the single target supplied as input is not supported by
the active driver. This exception is never raised when sense () is called with multiple targets, those
unsupported are then silently ignored.

exchange (send_data, timeout)
Exchange data with an activated target (send_data is a command frame) or as an activated target (send_data
is a response frame). Returns a target response frame (if data is send to an activated target) or a next
command frame (if data is send from an activated target). Returns None if the communication link broke
during exchange (if data is sent as a target). The timeout is the number of seconds to wait for data to
return, if the timeout expires an nfc.clf.TimeoutException is raised. Other nfc.clf. CommunicationError
exceptions may be raised if an error is detected during communication.

max_send_data_size
The maximum number of octets that can be send with the exchange () method in the established oper-
ating mode.

max_recv_data_ size
The maximum number of octets that can be received with the exchange () method in the established
operating mode.

class nfc.clf.RemoteTarget (brty, **kwargs)
Bases: nfc.clf.Target

A RemoteTarget instance provides bitrate and technology type and command/response data of a remote card or
device that, when input to sense (), shall be attempted to discover and, when returned by sense (), has been
discovered by the local device. Command/response data attributes, whatever name, default to None.

brty
A string that combines bitrate and technology type, e.g. ‘106A’.

class nfc.clf.LocalTarget (brty="106A", **kwargs)
Bases: nfc.clf.Target

A LocalTarget instance provides bitrate and technology type and command/response data of the local card or
device that, when input to 1 isten (), shall be made available for discovery and, when returned by 1isten (),
has been discovered by a remote device. Command/response data attributes, whatever name, default to None.

brty
A string that combines bitrate and technology type, e.g. ‘106A’.

exception nfc.clf.Error
Bases: Exception

Base class for exceptions specific to the contacless frontend module.
* UnsupportedTargetError
e CommunicationError
— ProtocolError
— TransmissionError

— TimeoutError

84 Chapter 7. Module Reference

https://docs.python.org/3/library/exceptions.html#Exception

nfcpy documentation, Release 1.0.4

— BrokenLinkError

exception nfc.clf.UnsupportedTargetError
Bases: nfc.clf.Error

The RemoteTarget input to ContactlessFrontend.sense() or LocalTarget input to
ContactlessFrontend.listen () is not supported by the local device.

exception nfc.clf.CommunicationError
Bases: nfc.clf.Error

Base class for communication errors.

exception nfc.clf.ProtocolError
Bases: nfc.clf.CommunicationError

Raised when an NFC Forum Digital Specification protocol error occured.

exception nfc.clf.TransmissionError
Bases: nfc.clf.CommunicationError

Raised when an NFC Forum Digital Specification transmission error occured.

exception nfc.clf.TimeoutError
Bases: nfc.clf.CommunicationError

Raised when an NFC Forum Digital Specification timeout error occured.

exception nfc.clf.BrokenLinkError
Bases: nfc.clf.CommunicationError

The remote device (Reader/Writer or P2P Device) has deactivated the RF field or is no longer within communi-
cation distance.

7.2.1 Contactless Frontend

Note: The contactless frontend defined in this module is also available as nfc. ContactlessFrontend.

class nfc.clf.ContactlessFrontend (path=None)
Bases: object

This class is the main interface for working with contactless devices. The connect () method provides easy
access to the contactless functionality through automated discovery of remote cards and devices and activation
of appropiate upper level protocols for further interaction. The sense (), listen () and exchange ()
methods provide a low-level interface for more specialized tasks.

An instance of the ContactlessFrontend class manages a single contactless device locally connect
through either USB, TTY or COM port. A special UDP port driver allows for emulation of a contactless
device that connects through UDP to another emulated contactless device for test and development of higher
layer functions.

A locally connected contactless device can be opened by either supplying a path argument when an an instance
of the contactless frontend class is created or by calling open () at a later time. In either case the path argument
must be constructed as described in open () and the same exceptions may occur. The difference is that open ()
returns False if a device could not be found whereas the initialization method raises IOError with errno.
ENODEV.

The methods of the ContactlessFrontend class are thread-safe.

7.2. nfc.clf 85

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/errno.html#errno.ENODEV
https://docs.python.org/3/library/errno.html#errno.ENODEV

nfcpy documentation, Release 1.0.4

open (path)
Open a contactless reader identified by the search path.

The open () method searches and then opens a contactless reader device for further communication. The
path argument can be flexibly constructed to identify more or less precisely the device to open. A path that
only partially identifies a device is completed by search. The first device that is found and successfully
opened causes open () to return True. If no device is found return value is False. If a device was found
but could not be opened then open () returns False if path was partial or raise TOError if path was fully
qualified. Typical I/O error reasons are errno.EACCES if the calling process has insufficient access
rights or errno . EBUSY if the device is used by another process.

A path is constructed as follows:
usb[:vendor [:product]]

with optional vendor and product as four digit hexadecimal numbers. For example,
usb:054c:06c3 would open the first Sony RC-S380 reader while usb: 054c would open
the first Sony reader found on USB.

usb[:bus[:device]]

with optional bus and device number as three-digit decimals. For example, usb:001:023
would open the device enumerated as number 23 on bus 1 while usb: 001 would open the first
device found on bust 1. Note that a new device number is generated every time the device is
plugged into USB. Bus and device numbers are shown by 1susb.

tty:port:driver

with mandatory port and driver name. This is for Posix systems to open the serial port /dev/
tty<port> and use the driver module nfc/dev/<driver>.py for access. For example,
tty:USBO:arygon would open /dev/ttyUSBO and load the Arygon APPx/ADRX driver.

com:port:driver

with mandatory port and driver name. This is for Windows systems to open the serial port
COM<port> and use the driver module nfc/dev/<driver>.py for access.

udp[:host] [:port]

with optional host name or address and port number. This will emulate a communication channel
over UDP/IP. The defaults for host and port are 1localhost:54321.

close ()
Close the contacless reader device.

connect (**options)
Connect with a Target or Initiator

The calling thread is blocked until a single activation and deactivation has completed or a callback func-
tion supplied as the keyword argument terminate returns a true value. The example below makes
connect () return after 5 seconds, regardless of whether a peer device was connected or not.

>>> import nfc, time

>>> clf = nfc.ContactlessFrontend('usb')

>>> after5s = lambda: time.time() - started > 5

>>> started = time.time(); clf.connect (llcp={}, terminate=afterbs)

Connect options are given as keyword arguments with dictionary values. Possible options are:
e rdwr={key: wvalue, ...} -options for reader/writer

e llcp={key: wvalue, ...} -options for peer to peer

86

Chapter 7. Module Reference

https://docs.python.org/3/library/errno.html#errno.EACCES
https://docs.python.org/3/library/errno.html#errno.EBUSY

nfcpy documentation, Release 1.0.4

e card={key: wvalue, ...} -options for card emulation
Reader/Writer Options

‘targets’ [iterable] A list of bitrate and technology type strings that will produce the RemoteTarget
objects to discover. The defaultis ('106A', '106B', '212F').

‘on-startup’ [function(targets)] This function is called before any attempt to discover a remote card. The
targets argument provides a list of RemoteTarget objects prepared from the ‘targets’ bitrate and
technology type strings. The function must return a list of of those RemoteTarget objects that shall
be finally used for discovery, those targets may have additional attributes. An empty list or anything
else that evaluates false will remove the ‘rdwr’ option completely.

‘on-discover’ [function(target)] This function is called when a RemoteTarget has been discovered.
The rarget argument contains the technology type specific discovery responses and should be evalu-
ated for multi-protocol support. The target will be further activated only if this function returns a true
value. The default function depends on the ‘llcp’ option, if present then the function returns True only
if the target does not indicate peer to peer protocol support, otherwise it returns True for all targets.

‘on-connect’ [function(tag)] This function is called when a remote tag has been activated. The tag ar-
gument is an instance of class nfc. tag. Tag and can be used for tag reading and writing within
the callback or in a separate thread. Any true return value instructs connect () to wait until the
tag is no longer present and then return True, any false return value implies immediate return of the
nfc.tag. Tag object.

‘on-release’ [function(tag)] This function is called when the presence check was run (the ‘on-connect’
function returned a true value) and determined that communication with the fag has become impos-
sible, or when the ‘terminate’ function returned a true value. The fag object may be used for cleanup
actions but not for communication.

‘iterations’ [integer] This determines the number of sense cycles performed between calls to the terminate
function. Each iteration searches once for all specified targets. The default value is 5 iterations and
between each iteration is a waiting time determined by the ‘interval’ option described below. As an
effect of math there will be no waiting time if iterations is set to 1.

‘interval’ [float] This determines the waiting time between iterations. The default value of 0.5 seconds
is considered a sensible tradeoff between responsiveness in terms of tag discovery and power con-
sumption. It should be clear that changing this value will impair one or the other. There is no free
beer.

‘beep-on-connect’: boolean If the device supports beeping or flashing an LED, automatically perform
this functionality when a tag is successfully detected AND the ‘on-connect’ function returns a true
value. Defaults to True.

import nfc

def on_startup(targets):
for target in targets:
target.sensf_req = bytearray.fromhex ("0012FC0000™)
return targets

def on_connect (tag):

print (tag)

rdwr_options = {
'targets': ['212F', '424F'],
'on-startup': on_startup,
'on—-connect': on_connect,

(continues on next page)

7.2. nfc.clf 87

nfcpy documentation, Release 1.0.4

(continued from previous page)

with nfc.ContactlessFrontend('usb') as clf:
tag = clf.connect (rdwr=rdwr_options)
if tag.ndef:
print (tag.ndef.message.pretty())

Peer To Peer Options

‘on-startup’ [function(llc)] This function is called before any attempt to establish peer to peer commu-
nication. The llc argument provides the LogicallLinkController that may be used to allocate
and bind listen sockets for local services. The function should return the llc object if activation shall
continue. Any other value removes the ‘llcp’ option.

‘on-connect’ [function(llc)] This function is called when peer to peer communication is successfully es-
tablished. The /lc argument provides the now activated LogicallLinkController ready for
allocation of client communication sockets and data exchange in separate work threads. The func-
tion should a true value return more or less immediately, unless it wishes to handle the logical link
controller run loop by itself and anytime later return a false value.

‘on-release’ [function(llc)] This function is called when the symmetry loop was run (the ‘on-connect’
function returned a true value) and determined that communication with the remote peer has become
impossible, or when the ‘terminate’ function returned a true value. The llc object may be used for
cleanup actions but not for communication.

‘role’ [string] This attribute determines whether the local device will restrict itself to either
'initiator' or 'target ' mode of operation. As Initiator the local device will try to discover a
remote device. As Target it waits for being discovered. The default is to alternate between both roles.

‘miu’ [integer] This attribute sets the maximum information unit size that is announced to the remote
device during link activation. The default and also smallest possible value is 128 bytes.

‘Ito’ [integer] This attribute sets the link timeout value (given in milliseconds) that is announced to the
remote device during link activation. It informs the remote device that if the local device does not
return a protocol data unit before the timeout expires, the communication link is broken and can not
be recovered. The lto is an important part of the user experience, it ultimately tells when the user
should no longer expect communication to continue. The default value is 500 millisecond.

‘agf’ [boolean] Some early phone implementations did not properly handle aggregated protocol data units.
This attribute allows to disable the use af aggregation at the cost of efficiency. Aggregation is disabled
with a false value. The default is to use aggregation.

‘brs’ [integer] For the local device in Initiator role the bit rate selector determines the the bitrate to nego-
tiate with the remote Target. The value may be 0, 1, or 2 for 106, 212, or 424 kbps, respectively. The
default is to negotiate 424 kbps.

‘acm’ [boolean] For the local device in Initiator role this attribute determines whether a remote Target may
also be activated in active communication mode. In active communication mode both peer devices
mutually generate a radio field when sending. The default is to use passive communication mode.

‘rwt’ [float] For the local device in Target role this attribute sets the response waiting time announced
during link activation. The response waiting time is a medium access layer (NFC-DEP) value that
indicates when the remote Initiator shall attempt error recovery after missing a Target response. The
value is the waiting time index wt that determines the effective response waiting time by the formula
rwt = 4096/13.56E6 * pow (2, wt). The value shall not be greater than 14. The default
value is 8 and yields an effective response waiting time of 77.33 ms.

‘Iri’ [integer] For the local device in Initiator role this attribute sets the length reduction for medium access
layer (NFC-DEP) information frames. The value may be 0, 1, 2, or 3 for a maximum payload size of
64, 128, 192, or 254 bytes, respectively. The default value is 3.

88 Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

‘Irt’

[integer] For the local device in Target role this attribute sets the length reduction for medium access

layer (NFC-DEP) information frames. The value may be 0, 1, 2, or 3 for a maximum payload size of
64, 128, 192, or 254 bytes, respectively. The default value is 3.

def

def

def

def

}

import nfc
import nfc.llcp
import threading

server (socket) :

message, address = socket.recvfrom()
socket.sendto("It's me!", address)
socket.close ()

client (socket) :
socket.sendto ("Hi there!", address=32)
socket.close ()

on_startup(llc):

socket = nfc.llcp.Socket (1llc, nfc.llcp.LOGICAL_DATA_LINK)
socket .bind (address=32)

threading.Thread (target=server, args=(socket,)).start()
return llc

on_connect (11lc) :

socket = nfc.llcp.Socket (1llc, nfc.llcp.LOGICAL_DATA_LINK)
threading.Thread (target=client, args=(socket,)) .start()
return True

llcp_options = {

'on-startup': on_startup,
'on—-connect': on_connect,

with nfc.ContactlessFrontend('usb') as clf:

clf.connect (llcp=llcp_options)
print ("link terminated")

Card Emulation Options

‘on-startup’ [function(target)] This function is called to prepare a local target for discovery. The input

argument is a fresh instance of an unspecific LocalTarget that can be set to the desired bitrate
and modulation type and populated with the type specific discovery responses (see 1isten () for
response data that is needed). The fully specified target object must then be returned.

‘on-discover’ [function(target)] This function is called when the LocalTarget has been discovered.

The target argument contains the technology type specific discovery commands. The target will be
further activated only if this function returns a true value. The default function always returns True.

‘on-connect’ [function(tag)] This function is called when the local target was discovered and a nfc.

tag.TagEmulation object successfully initialized. The function receives the emulated zag object
which stores the first command received after inialization as tag. cmd. The function should return a
true value if the tag.process_command() and tag.send_response() methods shall be called repeatedly
until either the remote device terminates communication or the ‘terminate’ function returns a true
value. The function should return a false value if the connect () method shall return immediately
with the emulated tag object.

‘on-release’ [function(tag)] This function is called when the Target was released by the Initiator or simply

moved away, or if the terminate callback function has returned a true value. The emulated fag object
may be used for cleanup actions but not for communication.

7.2. nfc.clf

89

nfcpy documentation, Release 1.0.4

import nfc

def on_startup(target):
idm = bytearray.fromhex ("01010501b00ac30b™)
pmm = bytearray.fromhex ("03014b024£4993ff")
sys = bytearray.fromhex ("1234")
target.brty = "212F"
target.sensf_res = chr(l) + idm + pmm + sys
return target

def on_connect (tag) :
print ("discovered by remote reader")
return True

def on_release(tag):
print ("remote reader is gone")
return True

card_options = {
'on-startup': on_startup,
'on-connect': on_connect,
'on-release': on_release,

}
with nfc.ContactlessFrontend('usb') as clf:
clf.connect (card=card_options)

Return Value

The connect () method returns None if there were no options left after the ‘on-startup’ functions have
been executed or when the ‘terminate’ function returned a true value. It returns False when terminated by
any of the following exceptions: KeyboardInterrupt, IOError, UnsupportedTargetError.

The connect () method returns a Tag, LogicalLinkController, or TagEmulation object if
the associated ‘on-connect’ function returned a false value to indicate that it will handle presence check,
peer to peer symmetry loop, or command/response processing by itself.

sense (*targets, **options)

Discover a contactless card or listening device.

Note: The sense () method is intended for experts with a good understanding of the commands and
responses exchanged during target activation (the notion used for commands and responses follows the
NFC Forum Digital Specification). If the greater level of control is not needed it is recommended to use
the connect () method.

All positional arguments build the list of potential fargets to discover and must be of type
RemoteTarget. Keyword argument options may be the number of iterations of the sense loop
set by rargets and the interval between iterations. The return value is either a RemoteTarget in-
stance or None.

>>> import nfc, nfc.clf

>>> from binascii import hexlify

>>> clf = nfc.ContactlessFrontend("usb")

>>> targetl = nfc.clf.RemoteTarget ("106A™)

>>> target2 = nfc.clf.RemoteTarget ("212F")

>>> print (clf.sense(targetl, target2, iterations=5, interval=0.2))
106A (sdd_res=04497622D93881, sel_res=00, sens_res=4400)

90

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

A Type A Target is specified with the technology letter A following the bitrate to be used for the
SENS_REQ command (almost always must the bitrate be 106 kbps). To discover only a specific Type
A target, the NFCID1 (UID) can be set with a 4, 7, or 10 byte sel_req attribute (cascade tags are
handled internally).

>>> target = nfc.clf.RemoteTarget ("106A™)

>>> print (clf.sense (target))

106A sdd_res=04497622D93881 sel_res=00 sens_res=4400
>>> target.sel_req = bytearray.fromhex ("04497622D93881")
>>> print (clf.sense(target))

106A sdd_res=04497622D93881 sel_res=00 sens_res=4400
>>> target.sel_req = bytearray.fromhex ("04497622")

>>> print (clf.sense(target))

None

A Type B Target is specified with the technology letter B following the bitrate to be used for the
SENSB_REQ command (almost always must the bitrate be 106 kbps). A specific application family
identifier can be set with the first byte of a sensb_req attribute (the second byte PARAM is ignored
when it can not be set to local device, 00h is a safe value in all cases).

>>> target = nfc.clf.RemoteTarget ("106B")

>>> print (clf.sense(target))

106B sens_res=50E5DD3DC900000011008185

>>> target.sensb_req = bytearray.fromhex ("0000")
>>> print (clf.sense(target))

106B sens_res=50E5DD3DC900000011008185

>>> target.sensb_req = bytearray.fromhex ("FEF00")
>>> print (clf.sense(target))

None

A Type F Target is specified with the technology letter F following the bitrate to be used for the
SENSF_REQ command (the typically supported bitrates are 212 and 424 kbps). The default SENSF_REQ
command allows all targets to answer, requests system code information, and selects a single time slot for
the SENSF_RES response. This can be changed with the sensf_req attribute.

>>> target = nfc.clf.RemoteTarget ("212F")

>>> print (clf.sense (target))

212F sensf_res=0101010601BOOADEOBO3014B024F4993FF12FC
>>> target.sensf_req = bytearray.fromhex ("0012FC0000™)
>>> print (clf.sense(target))

212F sensf_res=0101010601BOOADEOBO03014B024F4993FF

>>> target.sensf_req = bytearray.fromhex ("O0ABCDOOOO™)
>>> print (clf.sense (target))

None

An Active Communication Mode P2P Target search is selected with an at r_req attribute. The choice
of bitrate and modulation type is 106A, 212F, and 424F.

>>> atr = bytearray.fromhex ("D4000102030405060708091000000030™)
>>> target = clf.sense(nfc.clf.RemoteTarget ("106A", atr_reg=atr))
>>> if target and target.atr_res:

>>> print (hexlify (target.atr_res) .decode())
d501c023caebb3182afe3dee0000000e3246666d01011103020013040196

>>> target = clf.sense(nfc.clf.RemoteTarget ("424F", atr_reg=atr))
>>> if target and target.atr_res:

>>> print (hexlify (target.atr_res) .decode())
d501dc0104£04584e15769700000000e3246666d01011103020013040196

7.2. nfc.clf 91

nfcpy documentation, Release 1.0.4

Some drivers must modify the ATR_REQ to cope with hardware limitations, for example change length
reduction value to reduce the maximum size of target responses. The ATR_REQ that has been send is
given by the at r_req attribute of the returned RemoteTarget object.

A Passive Communication Mode P2P Target responds to 106A discovery with bit 6 of SEL_RES set
to 1, and to 212F/424F discovery (when the request code RC is 0 in the SENSF_REQ command) with
an NFCID?2 that starts with 01FEh in the SENSF_RES response. Responses below are from a Nexus 5
configured for NFC-DEP Protocol (SEL_RES bit 6 is set) and Type 4A Tag (SEL_RES bit 5 is set).

>>> print (clf.sense(nfc.clf.RemoteTarget ("106A")))

106A sdd_res=08796BEB sel_res=60 sens_res=0400

>>> sensf_req = bytearray.fromhex ("OOFFFF0000")

>>> print (clf.sense(nfc.clf.RemoteTarget ("424F", sensf_reg=sensf_req)))
424F sensf_res=0101FE1444EFB88FD50000000000000000

Errors found in the fargets argument list raise exceptions only if exactly one target is given. If multiple
targets are provided, any target that is not supported or has invalid attributes is just ignored (but is logged
as a debug message).

Exceptions

e TOError (ENODEV) when a local contacless communication device has not been opened or com-
munication with the local device is no longer possible.

e nfc.clf.UnsupportedTargetError if the single target supplied as input is not supported by
the active driver. This exception is never raised when sense () is called with multiple targets, those
unsupported are then silently ignored.

listen (target, timeout)

Listen timeout seconds to become activated as target.

Note: The 1isten () method is intended for experts with a good understanding of the commands and
responses exchanged during target activation (the notion used for commands and responses follows the
NFC Forum Digital Specification). If the greater level of control is not needed it is recommended to use
the connect () method.

The target argument is a LocalTarget object that provides bitrate, technology type and response
data attributes. The return value is either a LocalTarget object with bitrate, technology type and
request/response data attributes or None.

An P2P Target is selected when the at r_res attribute is set. The bitrate and technology type are decided
by the Initiator and do not need to be specified. The sens_res, sdd_res and sel_res attributes for
Type A technology as well as the sensf_res attribute for Type F technolgy must all be set.

When activated, the bitrate and type are set to the current communication values, the at r_req attribute
contains the ATR_REQ received from the Initiator and the dep_ req attribute contains the first DEP_REQ
received after activation. If the Initiator has changed communication parameters, the ps1_req attribute
holds the PSL._REQ that was received. The atr_res (and the ps1_res if transmitted) are also made
available.

If the local target was activated in passive communication mode either the Type A response (sens_res,
sdd_res, sel_res) or Type F response (sensf_res) attributes will be present.

With a Nexus 5 on a reader connected via USB the following code should be working and produce similar
output (the Nexus 5 prioritizes active communication mode):

>>> import nfc, nfc.clf
>>> clf = nfc.ContactlessFrontend("usb")

(continues on next page)

92

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

(continued from previous page)

>>> atr_res = "d50101fe01020304050607080000000832466664d010110"
>>> target = nfc.clf.LocalTarget ()

>>> target.sensf_res = bytearray.fromhex ("0L01lFE"+16x"FEF")

>>> target.sens_res = bytearray.fromhex ("0101")

>>> target.sdd_res = bytearray.fromhex ("08010203")

>>> target.sel_res bytearray.fromhex ("40")

>>> target.atr_res = bytearray.fromhex(atr_res)

>>> print (clf.listen(target, timeout=2.5))

424F atr_res=D50101FE0102030405060708000000083246666D010110

A Type A Target is selected when at r_res is not present and the technology type is A. The bitrate should
be set to 106 kbps, even if a driver supports higher bitrates they would need to be set after activation. The
sens_res, sdd_res and sel_res attributes must all be provided.

>>> target = nfc.clf.Localtarget ("106A")

>>> target.sens_res = bytearray.fromhex ("0101"))

>>> target.sdd_res = bytearray.fromhex ("08010203")

>>> target.sel_res = bytearray.fromhex ("00™)

>>> print (clf.listen(target, timeout=2.5))

106A sdd_res=08010203 sel_res=00 sens_res=0101 tt2_cmd=3000

A Type B Target is selected when atr_res is not present and the technology type is B. Unfor-
tunately none of the supported devices supports Type B technology for listen and an nfc.clf.
UnsupportedTargetError exception will be the only result.

>>> target = nfc.clf.LocalTarget ("106B")
>>> try: clf.listen(target, 2.5)
except nfc.clf.UnsupportedTargetError: print ("sorry")

sorry

A Type F Target is selected when atr_res is not present and the technology type is F. The bitrate may
be 212 or 424 kbps. The sensf_res attribute must be provided.

>>> idm, pmm, sys = "02FE010203040506", "FFFFFFFFFFFFFFFF", "12FC"
>>> target = nfc.clf.LocalTarget ("212F")

>>> target.sensf_res = bytearray.fromhex("01l" + idm + pmm + sys)
>>> print(clf.listen(target, 2.5))

212F sensf_reg=00FFFF0003 tt3_cmd=0C02FE010203040506

Exceptions

e TOError (ENODEV) when a local contacless communication device has not been opened or com-
munication with the local device is no longer possible.

e nfc.clf.UnsupportedTargetError if the single target supplied as input is not supported by
the active driver. This exception is never raised when sense () is called with multiple targets, those
unsupported are then silently ignored.

exchange (send_data, timeout)
Exchange data with an activated target (send_data is a command frame) or as an activated target (send_data
is a response frame). Returns a target response frame (if data is send to an activated target) or a next
command frame (if data is send from an activated target). Returns None if the communication link broke
during exchange (if data is sent as a target). The timeout is the number of seconds to wait for data to
return, if the timeout expires an nfc.clf. TimeoutException is raised. Other nfc.clf. CommunicationError
exceptions may be raised if an error is detected during communication.

7.2. nfc.clf 93

nfcpy documentation, Release 1.0.4

max_send data_size
The maximum number of octets that can be send with the exchange () method in the established oper-
ating mode.

max_recv_data_size
The maximum number of octets that can be received with the exchange () method in the established
operating mode.

7.2.2 Technology Types

class nfc.clf.RemoteTarget (brty, **kwargs)
Bases: nfc.clf.Target

A RemoteTarget instance provides bitrate and technology type and command/response data of a remote card or
device that, when input to sense (), shall be attempted to discover and, when returned by sense (), has been
discovered by the local device. Command/response data attributes, whatever name, default to None.

brty
A string that combines bitrate and technology type, e.g. ‘106A’.

class nfc.clf.LocalTarget (brty="106A’, **kwargs)
Bases: nfc.clf.Target

A LocalTarget instance provides bitrate and technology type and command/response data of the local card or
device that, when inputto 1isten (), shall be made available for discovery and, when returned by 1isten (),
has been discovered by a remote device. Command/response data attributes, whatever name, default to None.

brty
A string that combines bitrate and technology type, e.g. ‘106A’.

7.2.3 Exceptions
exception nfc.clf.Error
Bases: Exception
Base class for exceptions specific to the contacless frontend module.
* UnsupportedTargetError
¢ CommunicationError

ProtocolError

TransmissionError

TimeoutError

BrokenLinkError

exception nfc.clf.UnsupportedTargetError
Bases: nfc.clf.Error

The RemoteTarget input to ContactlessFrontend.sense() or LocalTarget input to
ContactlessFrontend.listen () is not supported by the local device.

exception nfc.clf.CommunicationError
Bases: nfc.clf.Error

Base class for communication errors.

94 Chapter 7. Module Reference

https://docs.python.org/3/library/exceptions.html#Exception

nfcpy documentation, Release 1.0.4

exception nfc.clf.ProtocolError
Bases: nfc.clf.CommunicationError

Raised when an NFC Forum Digital Specification protocol error occured.

exception nfc.clf.TransmissionError
Bases: nfc.clf.CommunicationError

Raised when an NFC Forum Digital Specification transmission error occured.

exception nfc.clf.TimeoutError
Bases: nfc.clf.CommunicationError

Raised when an NFC Forum Digital Specification timeout error occured.

exception nfc.clf.BrokenLinkError
Bases: nfc.clf.CommunicationError

The remote device (Reader/Writer or P2P Device) has deactivated the RF field or is no longer within communi-
cation distance.

7.2.4 Driver Interface

All contactless drivers must implement the interface defined in Device. Unsupported target discovery or target emu-
lation methods raise UnsupportedTargetError. The interface is used internally by ContactlessFrontend
and is not intended as an application programming interface. Device driver methods are not thread-safe and do not
necessarily check input arguments when they are supposed to be valid. The interface may change without notice at
any time.

nfc.clf.device.connect (path)
Connect to a local device identified by path and load the appropriate device driver. The path argument is docu-
mented at nfc.clf.ContactlessFrontend.open (). The return value is either a Devi ce instance or
None. Note that not all drivers can be autodetected, specifically for serial devices path must usually also specify
the driver.

class nfc.clf.device.Device (*args, **kwargs)
Bases: object

All device drivers inherit from the Device class and must implement it’s methods.

vendor_name
The device vendor name. An empty string if the vendor name could not be determined.

product_name
The device product name. An empty string if the product name could not be determined.

chipset_name
The name of the chipset embedded in the device.

mute ()
Mutes all existing communication, most notably the device will no longer generate a 13.56 MHz carrier
signal when operating as Initiator.

sense_tta (farget)
Discover a Type A Target.

Activates the 13.56 MHz carrier signal and sends a SENS_REQ command at the bitrate set by target.brty.
If a response is received, sends an RID_CMD for a Type 1 Tag or SDD_REQ and SEL_REQ for a Type
2/4 Tag and returns the responses.

7.2. nfc.clf 95

https://docs.python.org/3/library/functions.html#object

nfcpy documentation, Release 1.0.4

Parameters target (nfc.clf.RemoteTarget)— Supplies bitrate and optional command
data for the target discovery. The only sensible command to set is sel_req populated with a
UID to find only that specific target.

Returns

Response data received from a remote target if found. This includes at least sens_res and
either rid_res (for a Type 1 Tag) or sdd_res and sel_res (for a Type 2/4 Tag).

Return type nfc.clf.RemoteTarget

Raises nfc.clf.UnsupportedTargetError —The method is not supported or the target
argument requested an unsupported bitrate (or has a wrong technology type identifier).

sense_ttb (target)
Discover a Type B Target.

Activates the 13.56 MHz carrier signal and sends a SENSB_REQ command at the bitrate set by tar-
get.brty. If a SENSB_RES is received, returns a target object with the sensb_res attribute.

Note that the firmware of some devices (least all those based on PN53x) automatically sends an ATTRIB
command with varying but always unfortunate communication settings. The drivers correct that situation
by sending S(DESELECT) and WUPB before return.

Parameters target (nfc.clf.RemoteTarget) — Supplies bitrate and the optional
sensb_req for target discovery. Most drivers do no not allow a fully customized
SENSB_REQ), the only parameter that can always be changed is the AFI byte, others may be
ignored.

Returns

Response data received from a remote target if found. The only response data attribute is
sensb_res.

Return type nfc.clf.Remotelarget

Raises nfc.clf.UnsupportedTargetError —The method is not supported or the farget
argument requested an unsupported bitrate (or has a wrong technology type identifier).

sense_ttf£ (targer)
Discover a Type F Target.

Activates the 13.56 MHz carrier signal and sends a SENSF_REQ command at the bitrate set by tar-
get.brty. If a SENSF_RES is received, returns a target object with the sensf_res attribute.

Parameters target (nfc.clf.RemoteTarget) — Supplies bitrate and the optional
sensf_req for target discovery. The default SENSF_REQ invites all targets to respond and
requests the system code information bytes.

Returns

Response data received from a remote target if found. The only response data attribute is
sensf_res.

Return type nfc.clf.RemoteTarget

Raises nfc.clf.UnsupportedTargetError —The method is not supported or the target
argument requested an unsupported bitrate (or has a wrong technology type identifier).

sense_dep (target)
Discover a NFC-DEP Target in active communication mode.

Activates the 13.56 MHz carrier signal and sends an ATR_REQ command at the bitrate set by target.brty.
If an ATR_RES is received, returns a target object with the atr_res attribute.

96 Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

Note that some drivers (like pn531) may modify the transport data bytes length reduction value in
ATR_REQ and ATR_RES due to hardware limitations.

Parameters target (nfc.clf.RemoteTarget) — Supplies bitrate and the mandatory
atr_req for target discovery. The bitrate may be one of ‘106A’, ‘212F’, or ‘424F’.

Returns

Response data received from a remote target if found. The only response data attribute is
atr_res. The actually sent and potentially modified ATR_REQ is also included as atr_req
attribute.

Return type nfc.clf.RemoteTlarget

Raises nfc.clf.UnsupportedTargetError —The method is not supported or the rarget
argument requested an unsupported bitrate (or has a wrong technology type identifier).

listen_tta (target, timeout)

Listen as Type A Target.

Waits to receive a SENS_REQ command at the bitrate set by target.brty and sends the target.sens_res
response. Depending on the SENS_RES bytes, the Initiator then sends an RID_CMD (SENS_RES coded
for a Type 1 Tag) or SDD_REQ and SEL_REQ (SENS_RES coded for a Type 2/4 Tag). Responses are
then generated from the rid_res or sdd_res and sel_res attributes in target.

Note that none of the currently supported hardware can actually receive an RID_CMD, thus Type 1 Tag
emulation is impossible.

Parameters

* target (nfc.clf.LocalTarget)— Supplies bitrate and mandatory response data to
reply when being discovered.

* timeout (f1oat)—The maximum number of seconds to wait for a discovery command.
Returns

Command data received from the remote Initiator if being discovered and to the extent
supported by the device. The first command received after discovery is returned as one of
the tt1_cmd, tt2_cmd or tt4_cmd attribute (note that unset attributes are always None).

Return type nfc.clf-LocalTarget
Raises

e nfc.clf.UnsupportedTargetError — The method is not supported or the farget
argument requested an unsupported bitrate (or has a wrong technology type identifier).

* ValueError — A required target response attribute is not present or does not supply the
number of bytes expected.

listen_ttb (rarget, timeout)

Listen as Type A Target.

Wiaits to receive a SENSB_REQ command at the bitrate set by target.brty and sends the target.sensb_res
response.

Note that none of the currently supported hardware can actually listen as Type B target.
Parameters

* target (nfc.clf.LocalTarget)— Supplies bitrate and mandatory response data to
reply when being discovered.

* timeout (float) - The maximum number of seconds to wait for a discovery command.

7.2.

nfc.clf 97

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

nfcpy documentation, Release 1.0.4

Returns

Command data received from the remote Initiator if being discovered and to the extent
supported by the device. The first command received after discovery is returned as
tt4_cmd attribute.

Return type nfc.clf.LocalTarget
Raises

* nfc.clf.UnsupportedTargetError — The method is not supported or the farget
argument requested an unsupported bitrate (or has a wrong technology type identifier).

e ValueError — A required target response attribute is not present or does not supply the
number of bytes expected.

listen_ttf£ (rarget, timeout)
Listen as Type A Target.

Waits to receive a SENSF_REQ command at the bitrate set by target.brty and sends the target.sensf_res
response. Then waits for a first command that is not a SENSF_REQ and returns this as the tt3_cmd
attribute.

Parameters

* target (nfc.clf.LocalTarget)— Supplies bitrate and mandatory response data to
reply when being discovered.

* timeout (f1oat)—The maximum number of seconds to wait for a discovery command.
Returns

Command data received from the remote Initiator if being discovered and to the extent
supported by the device. The first command received after discovery is returned as
tt3_cmd attribute.

Return type nfc.clf:LocalTarget
Raises

* nfc.clf.UnsupportedTargetError — The method is not supported or the farget
argument requested an unsupported bitrate (or has a wrong technology type identifier).

* ValueError — A required target response attribute is not present or does not supply the
number of bytes expected.

listen_dep (farget, timeout)
Listen as NFC-DEP Target.

Wiaits to receive an ATR_REQ (if the local device supports active communication mode) or a Type A or
F Target activation followed by an ATR_REQ in passive communication mode. The ATR_REQ is replied
with target.atr_res. The first DEP_REQ command is returned as the dep_req attribute along with atr_req
and atr_res. The psl_req and psl_res attributes are returned when the has Initiator performed a parameter
selection. The sens_res or sensf_res attributes are returned when activation was in passive communication
mode.

Parameters

* target (nfc.clf.LocalTarget)— Supplies mandatory response data to reply when
being discovered. All of sens_res, sdd_res, sel_res, sensf_res, and atr_res must be pro-
vided. The bitrate does not need to be set, an NFC-DEP Target always accepts discovery
at ‘106A’, ‘212F and ‘424F°.

* timeout (float) - The maximum number of seconds to wait for a discovery command.

98 Chapter 7. Module Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

nfcpy documentation, Release 1.0.4

Returns

Command data received from the remote Initiator if being discovered and to the extent
supported by the device. The first command received after discovery is returned as
dep_req attribute.

Return type nfc.clf.LocalTarget
Raises

* nfc.clf.UnsupportedTargetError — The method is not supported by the local
hardware.

e ValueError — A required target response attribute is not present or does not supply the
number of bytes expected.

send_cmd_recv_rsp (target, data, timeout)
Exchange data with a remote Target

Sends command data to the remote target discovered in the most recent call to one of the sense_xxx()
methods. Note that farget becomes invalid with any call to mute(), sense_xxx() or listen_xxx()

Parameters

e target (nfc.clf.RemoteTarget) — The target returned by the last successful call
of a sense_xxx() method.

* data (bytearray)— The binary data to send to the remote device.

* timeout (float) — The maximum number of seconds to wait for response data from
the remote device.

Returns Response data received from the remote device.
Return type bytearray
Raises nfc.clf.CommunicationError — When no data was received.

send_rsp_recv_cmd (farget, data, timeout=None)
Exchange data with a remote Initiator

Sends response data as the local rarget being discovered in the most recent call to one of the listen_xxx()
methods. Note that farget becomes invalid with any call to mute(), sense_xxx() or listen_xxx()

Parameters

* target (nfc.clf.LocalTarget)— The target returned by the last successful call of
a listen_xxx() method.

* data (bytearray)— The binary data to send to the remote device.

¢ timeout (float)— The maximum number of seconds to wait for command data from
the remote device.

Returns Command data received from the remote device.
Return type bytearray
Raises nfc.clf.CommunicationError — When no data was received.

get_max_ send_data_size (farget)
Returns the maximum number of data bytes for sending.

The maximum number of data bytes acceptable for sending with either send cmd_recv_rsp () or
send_rsp_recv_cmd (). The value reflects the local device capabilities for sending in the mode de-
termined by rarget. It does not relate to any protocol capabilities and negotiations.

7.2.

nfc.clf 99

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytearray

nfcpy documentation, Release 1.0.4

Parameters target (nfc.clf. Target) — The current local or remote communication tar-
get.

Returns Maximum number of data bytes supported for sending.
Return type int

get_max recv_data_size (farget)
Returns the maximum number of data bytes for receiving.

The maximum number of data bytes acceptable for receiving with either send_cmd_recv_rsp () or
send_rsp_recv_cmd (). The value reflects the local device capabilities for receiving in the mode
determined by target. It does not relate to any protocol capabilities and negotiations.

Parameters target (nfc.clf.Target) — The current local or remote communication tar-
get.

Returns Maximum number of data bytes supported for receiving.
Return type int

turn_on_led and buzzer ()
If a device has an LED and/or a buzzer, this method can be implemented to turn those indicators to the ON
state.

turn off led and buzzer ()
If a device has an LED and/or a buzzer, this method can be implemented to turn those indicators to the
OFF state.

7.2.5 Device Drivers

rcs380

Driver module for contactless devices based on the Sony NFC Port-100 chipset. The only product known to use this
chipset is the PaSoRi RC-S380. The RC-S380 connects to the host as a native USB device.

The RC-S380 has been the first NFC Forum certified device. It supports reading and writing of all NFC Forum tags as
well as peer-to-peer mode. In addition, the NFC Port-100 also supports card emulation Type A and Type F Technology.
A notable restriction is that peer-to-peer active communication mode (not required for NFC Forum certification) is not
supported.

function support | remarks
sense_tta | yes
sense_ttb yes
sense_ttf yes
sense_dep | no
listen_tta | yes Type F responses can not be disabled
listen_ttb no
listen_ttf yes
listen_dep | yes Only passive communication mode

exception nfc.clf.rcs380.CommunicationError (status_bytes)
Bases: Exception

exception nfc.clf.rcs380.StatusError (stafus)
Bases: Exception

100 Chapter 7. Module Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

nfcpy documentation, Release 1.0.4

class nfc.clf.rcs380.Device (chipset, logger)
Bases: nfc.clf.device.Device

mute ()
Mutes all existing communication, most notably the device will no longer generate a 13.56 MHz carrier
signal when operating as Initiator.

sense_tta (farget)
Sense for a Type A Target is supported for 106, 212 and 424 kbps. However, there may not be any target
that understands the activation commands in other than 106 kbps.

sense_ttb (farget)
Sense for a Type B Target is supported for 106, 212 and 424 kbps. However, there may not be any target
that understands the activation command in other than 106 kbps.

sense_ttf (target)
Sense for a Type F Target is supported for 212 and 424 kbps.

sense_dep (farget)
Sense for an active DEP Target is not supported. The device only supports passive activation via
sense_tta/sense_ttf.

listen_tta (target, timeout)
Listen as Type A Target in 106 kbps.

Restrictions:

* Itis not possible to send short frames that are required for ACK and NAK responses. This means that
a Type 2 Tag emulation can only implement a single sector memory model.

* It can not be avoided that the chipset responds to SENSF_REQ commands. The driver configures the
SENSF_RES response to all zero and ignores all Type F communication but eventually it depends on
the remote device whether Type A Target activation will still be attempted.

listen_ttb (tfarget, timeout)
Listen as Type B Target is not supported.

listen_ttf£ (rarget, timeout)
Listen as Type F Target is supported for either 212 or 424 kbps.

listen_dep (target, timeout)
Listen as NFC-DEP Target.

Waits to receive an ATR_REQ (if the local device supports active communication mode) or a Type A or
F Target activation followed by an ATR_REQ in passive communication mode. The ATR_REQ is replied
with target.atr_res. The first DEP_REQ command is returned as the dep_req attribute along with atr_req
and atr_res. The psl_req and psl_res attributes are returned when the has Initiator performed a parameter
selection. The sens_res or sensf_res attributes are returned when activation was in passive communication

mode.
Parameters
* target (nfc.clf.LocalTarget)— Supplies mandatory response data to reply when
being discovered. All of sens_res, sdd_res, sel_res, sensf_res, and atr_res must be pro-
vided. The bitrate does not need to be set, an NFC-DEP Target always accepts discovery
at ‘106A’, ‘212F and ‘424F’.
* timeout (f1oat)—The maximum number of seconds to wait for a discovery command.
Returns

7.2. nfc.clf 101

https://docs.python.org/3/library/functions.html#float

nfcpy documentation, Release 1.0.4

Command data received from the remote Initiator if being discovered and to the extent
supported by the device. The first command received after discovery is returned as

dep_req attribute.
Return type nfc.clf:-Locallarget

Raises
e nfc.clf.UnsupportedTargetError — The method is not supported by the local
hardware.
* ValueError — A required target response attribute is not present or does not supply the

number of bytes expected.

get_max_ send_data_size (target)
Returns the maximum number of data bytes for sending.

The maximum number of data bytes acceptable for sending with either send cmd_recv._rsp () or
send_rsp_recv_cmd (). The value reflects the local device capabilities for sending in the mode de-
termined by rarget. It does not relate to any protocol capabilities and negotiations.

Parameters target (nfc.clf.Target) — The current local or remote communication tar-

get.

Returns Maximum number of data bytes supported for sending.

Return type int

get_max recv_data_size (target)
Returns the maximum number of data bytes for receiving.

The maximum number of data bytes acceptable for receiving with either send_cmd_recv_rsp () or
send_rsp_recv_cmd (). The value reflects the local device capabilities for receiving in the mode

determined by farget. It does not relate to any protocol capabilities and negotiations.

Parameters target (nfc.clf.Target) — The current local or remote communication tar-

get.

Returns Maximum number of data bytes supported for receiving.

Return type int

send_cmd_recv_rsp (target, data, timeout)
Exchange data with a remote Target

Sends command data to the remote target discovered in the most recent call to one of the sense_xxx()
methods. Note that farget becomes invalid with any call to mute(), sense_xxx() or listen_xxx()
Parameters

e target (nfc.clf.RemoteTarget) — The target returned by the last successful call
of a sense_xxx() method.

* data (bytearray)— The binary data to send to the remote device.

* timeout (float) — The maximum number of seconds to wait for response data from
the remote device.

Returns Response data received from the remote device.

Return type bytearray

Raises nfc.clf.CommunicationError — When no data was received.

102 Chapter 7. Module Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytearray

nfcpy documentation, Release 1.0.4

send_rsp_recv_cmd (farget, data, timeout)
Exchange data with a remote Initiator

Sends response data as the local target being discovered in the most recent call to one of the listen_xxx()
methods. Note that farget becomes invalid with any call to mute(), sense_xxx() or listen_xxx()

Parameters

* target (nfc.clf.LocalTarget)— The target returned by the last successful call of
a listen_xxx() method.

* data (bytearray) - The binary data to send to the remote device.

¢ timeout (float)— The maximum number of seconds to wait for command data from
the remote device.

Returns Command data received from the remote device.
Return type bytearray

Raises nfc.clf.CommunicationError — When no data was received.

pn531

Driver module for contactless devices based on the NXP PN531 chipset. This was once a (sort of) joint development
between Philips and Sony to supply hardware capable of running the ISO/IEC 18092 Data Exchange Protocol. The
chip has selectable UART, 12C, SPI, or USB host interfaces, For USB the vendor and product ID can be switched by
a hardware pin to either Philips or Sony.

The internal chipset architecture comprises a small 8-bit MCU and a Contactless Interface Unit CIU that is basically
a PN511. The CIU implements the analog and digital part of communication (modulation and framing) while the
MCU handles the protocol parts and host communication. The PN511 and hence the PN531 does not support Type B
Technology and can not handle the specific Jewel/Topaz (Type 1 Tag) communication. Compared to PN532/PN533
the host frame structure does not allow maximum size ISO/IEC 18092 packets to be transferred. The driver handles
this restriction by modifying the initialization commands (ATR, PSL) when needed.

function support | remarks

sense_tta | yes Type 1 Tag is not supported
sense_ttb no
sense_ttf | yes
sense_dep | yes Reduced transport data byte length (max 192)
listen_tta yes
listen_ttb no
listen_ttf | yes Maximimum frame size is 64 byte
listen_dep | yes

class nfc.clf.pn531.Device (chipset, logger)
Bases: nfc.clf.pn53x.Device

sense_tta (farget)
Activate the RF field and probe for a Type A Target.

The PN531 can discover some Type A Targets (Type 2 Tag and Type 4A Tag) at 106 kbps. Type 1 Tags
(Jewel/Topaz) are completely unsupported. Because the firmware does not evaluate the SENS_RES before
sending SDD_REQ), it may be that a warning message about missing Type 1 Tag support is logged even if
a Type 2 or 4A Tag was present. This typically happens when the SDD_RES or SEL._RES are lost due to
communication errors (normally when the tag is moved away).

7.2. nfc.clf 103

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytearray

nfcpy documentation, Release 1.0.4

pn532

sense_ttb (farget)

Sense for a Type B Target is not supported.

sense_ttf (target)

Activate the RF field and probe for a Type F Target.

sense_dep (farget)

Search for a DEP Target in active communication mode.

Because the PN531 does not implement the extended frame syntax for host controller communication, it
can not support the maximum payload size of 254 byte. The driver handles this by modifying the length-
reduction values in atr_req and atr_res.

listen_tta (farget, timeout)

Listen timeout seconds for a Type A activation at 106 kbps. The sens_res, sdd_res, and sel_res
response data must be provided and sdd_res must be a 4 byte UID that starts with 08h. Depending
on sel_res an activation may return a target with a tt2_cmd, tt4_cmd or atr_req attribute. The
default RATS response sent for a Type 4 Tag activation can be replaced with a rats_res attribute.

listen_ttb (rfarget, timeout)

Listen as Type B Target is not supported.

listen_ttf£ (rarget, timeout)

Listen timeout seconds for a Type F card activation. The target brty must be set to either 212F or 424F
and sensf_res provide 19 byte response data (response code + 8 byte IDm + 8 byte PMm + 2 byte
system code). Note that the maximum command an response frame length is 64 bytes only (including
the frame length byte), because the driver must directly program the contactless interface unit within the
PN533.

listen_dep (target, timeout)

Listen timeout seconds to become initialized as a DEP Target.

The PN531 can be set to listen as a DEP Target for passive and active communication mode.

Driver module for contactless devices based on the NXP PN532 chipset. This successor of the PN531 can additionally
handle Type B Technology (type 4B Tags) and Type 1 Tag communication. It also supports an extended frame syntax
for host communication that allows larger packets to be transferred. The chip has selectable UART, I12C or SPI host
interfaces. A speciality of the PN532 is that it can manage two targets (cards) simultanously, although this is not used

by nfcpy.

The internal chipset architecture comprises a small 8-bit MCU and a Contactless Interface Unit CIU that is basically a
PN512. The CIU implements the analog and digital part of communication (modulation and framing) while the MCU
handles the protocol parts and host communication. Almost all PN532 firmware limitations (or bugs) can be avoided
by directly programming the CIU. Type F Target mode for card emulation is completely implemented with the CIU
and limited to 64 byte frame exchanges by the CIU’s FIFO size. Type B Target mode is not possible.

function support | remarks
sense_tta yes
sense_ttb yes
sense_ttf yes
sense_dep | yes
listen_tta yes
listen_ttb | no
listen_ttf | yes Maximimum frame size is 64 byte
listen_dep | yes

104

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

class nfc.clf.pn532.Device (chipset, logger)
Bases: nfc.clf.pn53x.Device

sense_tta (farget)
Search for a Type A Target.

The PN532 can discover all kinds of Type A Targets (Type 1 Tag, Type 2 Tag, and Type 4A Tag) at 106
kbps.

sense_ttb (target)
Search for a Type B Target.

The PN532 can discover Type B Targets (Type 4B Tag) at 106 kbps. For a Type 4B Tag the firmware
automatically sends an ATTRIB command that configures the use of DID and 64 byte maximum frame
size. The driver reverts this configuration with a DESELECT and WUPB command to return the target
prepared for activation (which nfcpy does in the tag activation code).

sense_ttf£ (farget)
Search for a Type F Target.

The PN532 can discover Type F Targets (Type 3 Tag) at 212 and 424 kbps. The driver uses the default
polling command 0 6FFFF0000 if no target.sens_reqis supplied.

sense_dep (farget)
Search for a DEP Target in active communication mode.

listen_tta (target, timeout)
Listen timeout seconds for a Type A activation at 106 kbps. The sens_res, sdd_res, and sel_res
response data must be provided and sdd_res must be a 4 byte UID that starts with 08h. Depending
on sel_res an activation may return a target with a tt2_cmd, tt4_cmd or atr_req attribute. The
default RATS response sent for a Type 4 Tag activation can be replaced with a rats_res attribute.

listen_ttb (rfarget, timeout)
Listen as Type B Target is not supported.

listen_ttf£ (target, timeout)
Listen timeout seconds for a Type F card activation. The target brty must be set to either 212F or 424F
and sensf_res provide 19 byte response data (response code + 8 byte IDm + 8 byte PMm + 2 byte
system code). Note that the maximum command an response frame length is 64 bytes only (including
the frame length byte), because the driver must directly program the contactless interface unit within the
PN533.

listen_dep (target, timeout)
Listen timeout seconds to become initialized as a DEP Target.

The PN532 can be set to listen as a DEP Target for passive and active communication mode.
pn533
Driver module for contactless devices based on the NXP PN533 chipset. The PN533 is pretty similar to the PN532

except that it also has a USB host interface option and, probably due to the resources needed for USB, does not support
two simultaneous targets. Anything else said about PN532 also applies to PN533.

7.2. nfc.clf 105

nfcpy documentation, Release 1.0.4

function support | remarks
sense_tta yes
sense_ttb yes
sense_ttf yes
sense_dep | yes
listen_tta yes
listen_ttb | no
listen_ttf | yes Maximimum frame size is 64 byte
listen_dep | yes

class nfc.clf.pn533.Device (chipset, logger)

Bases: nfc.clf.pn53x.Device

sense_tta (farget)
Activate the RF field and probe for a Type A Target.

The PN533 can discover all kinds of Type A Targets (Type 1 Tag, Type 2 Tag, and Type 4A Tag) at 106
kbps.

sense_ttb (target)
Activate the RF field and probe for a Type B Target.

The PN533 can discover Type B Targets (Type 4B Tag) at 106, 212, 424, and 848 kbps. The PN533 auto-
matically sends an ATTRIB command that configures a 64 byte maximum frame size. The driver reverts
this configuration with a DESELECT and WUPB command to return the target prepared for activation.

sense_ttf£ (farget)
Activate the RF field and probe for a Type F Target.

The PN533 can discover Type F Targets (Type 3 Tag) at 212 and 424 kbps.

sense_dep (target)
Search for a DEP Target in active communication mode.

send_cmd_recv_rsp (farget, data, timeout)
Send command data to the remote target and return the response data if received within timeout seconds.

listen_tta (target, timeout)
Listen timeout seconds for a Type A activation at 106 kbps. The sens_res, sdd_res, and sel_res
response data must be provided and sdd_res must be a 4 byte UID that starts with 08h. Depending
on sel_res an activation may return a target with a tt2_cmd, tt4_cmd or atr_req attribute. The
default RATS response sent for a Type 4 Tag activation can be replaced with a rats_res attribute.

listen_ttb (rfarget, timeout)
Listen as Type B Target is not supported.

listen_ttf£ (rarget, timeout)
Listen timeout seconds for a Type F card activation. The target brty must be set to either 212F or 424F
and sensf_res provide 19 byte response data (response code + 8 byte IDm + 8 byte PMm + 2 byte
system code). Note that the maximum command an response frame length is 64 bytes only (including
the frame length byte), because the driver must directly program the contactless interface unit within the
PN533.

listen_dep (farget, timeout)
Listen timeout seconds to become initialized as a DEP Target.

The PN533 can be set to listen as a DEP Target for passive and active communication mode.

106

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

send_rsp_recv_cmd (farget, data, timeout)
While operating as target send response data to the remote device and return new command data if received
within timeout seconds.

rcs956

Driver for contacless devices based on the Sony RC-S956 chipset. Products known to use this chipset are the PaSoRi
RC-S330, RC-S360, and RC-S370. The RC-S956 connects to the host as a native USB device.

The RC-S956 has the same hardware architecture as the NXP PN53x family, i.e. it has a PN512 Contactless Interface
Unit (CIU) coupled with a 80C51 microcontroller and uses the same frame structure for host communication and
mostly the same commands. However, the firmware that runs on the 80C51 is different and the most notable difference
is a much stricter state machine. The state machine restricts allowed commands to certain modes. While direct access
to the CIU registers is possible, some of the things that can be done with a PN53x are unfortunately prevented by the
stricter state machine.

function support | remarks

sense_tta | yes Only Type 1 Tags up to 128 byte (Topaz-96)
sense_ttb | yes ATTRIB by firmware voided with S(DESELECT)
sense_ttf yes
sense_dep | yes
listen_tta | yes Only DEP and Type 2 Target
listen_ttb no
listen_ttf no
listen_dep | yes Only passive communication mode

class nfc.clf.rcs956.Device (chipset, logger)

Bases: nfc.clf.pn53x.Device

mute ()
Mutes all existing communication, most notably the device will no longer generate a 13.56 MHz carrier
signal when operating as Initiator.

sense_tta (farget)
Activate the RF field and probe for a Type A Target.

The RC-S956 can discover all Type A Targets (Type 1 Tag, Type 2 Tag, and Type 4A Tag) at 106 kbps.
Due to firmware restrictions it is not possible to read a Type 1 Tag with dynamic memory layout (more
than 128 byte memory).

sense_ttb (target)
Activate the RF field and probe for a Type B Target.

The RC-S956 can discover Type B Targets (Type 4B Tag) at 106 kbps. For a Type 4B Tag the firmware
automatically sends an ATTRIB command that configures the use of DID and 64 byte maximum frame
size. The driver reverts this configuration with a DESELECT and WUPB command to return the target
prepared for activation (which nfcpy does in the tag activation code).

sense_ttf (target)
Activate the RF field and probe for a Type F Target.

sense_dep (farget)
Search for a DEP Target in active or passive communication mode.

listen_tta (target, timeout)
Listen timeout seconds for a Type A activation at 106 kbps. The sens_res, sdd_res, and sel_res
response data must be provided and sdd_res must be a 4 byte UID that starts with 08h. Depending

7.2.

nfc.clf 107

nfcpy documentation, Release 1.0.4

on sel_res an activation may return a target with tt2_cmd or atr_req attribute. A Type 4A Tag
activation is not supported.

listen_ttb (rarget, timeout)

Listen as Type B Target is not supported.

listen_ttf£ (rarget, timeout)

Listen as Type F Target is not supported.

listen_dep (farget, timeout)

acr122

Listen timeout seconds to become initialized as a DEP Target.

The RC-S956 can be set to listen as a DEP Target for passive communication mode. Target active commu-
nication mode is disabled by the driver due to performance issues. It is also not possible to fully control
the ATR_RES response, only the response waiting time (TO byte of ATR_RES) and the general bytes can
be set by the driver. Because the TO value must be set before calling the hardware listen function, it can
not be different for the Type A of Type F passive initalization (the driver uses the higher value if they are
different).

Device driver for the Arygon ACR122U contactless reader.

The Arygon ACR122U is a PC/SC compliant contactless reader that connects via USB and uses the USB CCID
profile. It is normally intented to be used with a PC/SC stack but this driver interfaces directly with the inbuilt PN532
chipset by tunneling commands through the PC/SC Escape command. The driver is limited in functionality because the
embedded microprocessor (that implements the PC/SC stack) also operates the PN532; it does not allow all commands
to pass as desired and reacts on chip responses with its own (legitimate) interpretation of state.

function support | remarks

sense_tta | yes Type 1 (Topaz) Tags are not supported

sense_ttb | yes ATTRIB by firmware voided with S(DESELECT)
sense_ttf yes
sense_dep | yes
listen_tta no
listen_ttb no
listen_ttf no
listen_dep | no

class nfc.clf.acrl22.Device (chipset)
Bases: nfc.clf.pn532.Device

sense_tta (target)

Activate the RF field and probe for a Type A Target at 106 kbps. Other bitrates are not supported. Type 1
Tags are not supported because the device does not allow to send the correct RID command (even though
the PN532 does).

sense_ttb (rarget)

Activate the RF field and probe for a Type B Target.

The RC-S956 can discover Type B Targets (Type 4B Tag) at 106 kbps. For a Type 4B Tag the firmware
automatically sends an ATTRIB command that configures the use of DID and 64 byte maximum frame
size. The driver reverts this configuration with a DESELECT and WUPB command to return the target
prepared for activation (which nfcpy does in the tag activation code).

sense_ttf (farget)

Activate the RF field and probe for a Type F Target. Bitrates 212 and 424 kpbs are supported.

108

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

sense_dep (farget)
Search for a DEP Target. Both passive and passive communication mode are supported.

listen_tta (target, timeout)
Listen as Type A Target is not supported.

listen_ttb (rarget, timeout)
Listen as Type B Target is not supported.

listen_ttf£ (target, timeout)
Listen as Type F Target is not supported.

listen_dep (target, timeout)
Listen as DEP Target is not supported.

turn_on_led_and buzzer ()
Buzz and turn red.

turn off led and buzzer ()
Back to green.

udp

Driver module for simulated contactless communication over UDP/IP. It can be activated with the device path
udp: <host>:<port> where the optional host may be the IP address or name of the node where the targeted
communication partner is listening on port. The default values for host and port are localhost :54321.

The driver implements almost all communication modes, with the current exception of active communication mode
data exchange protocol.

function support | remarks
sense_tta yes
sense_ttb yes
sense_ttf yes
sense_dep | no

listen_tta yes
listen_ttb yes
listen_ttf yes
listen_dep | yes

class nfc.clf.udp.Device (host, port)
Bases: nfc.clf.device.Device

mute ()
Mutes all existing communication, most notably the device will no longer generate a 13.56 MHz carrier
signal when operating as Initiator.

sense_tta (farget)
Discover a Type A Target.

Activates the 13.56 MHz carrier signal and sends a SENS_REQ command at the bitrate set by target.brty.
If a response is received, sends an RID_CMD for a Type 1 Tag or SDD_REQ and SEL_REQ for a Type
2/4 Tag and returns the responses.

Parameters target (nfc.clf.RemoteTarget)— Supplies bitrate and optional command
data for the target discovery. The only sensible command to set is sel_req populated with a
UID to find only that specific target.

7.2. nfc.clf 109

nfcpy documentation, Release 1.0.4

Returns

Response data received from a remote target if found. This includes at least sens_res and
either rid_res (for a Type 1 Tag) or sdd_res and sel_res (for a Type 2/4 Tag).

Return type nfc.clf.RemoteTlarget

Raises nfc.clf.UnsupportedTargetError —The method is not supported or the target
argument requested an unsupported bitrate (or has a wrong technology type identifier).

sense_ttb (target)
Discover a Type B Target.

Activates the 13.56 MHz carrier signal and sends a SENSB_REQ command at the bitrate set by tar-
get.brty. If a SENSB_RES is received, returns a target object with the sensb_res attribute.

Note that the firmware of some devices (least all those based on PN53x) automatically sends an ATTRIB
command with varying but always unfortunate communication settings. The drivers correct that situation
by sending S(DESELECT) and WUPB before return.

Parameters target (nfc.clf.RemoteTarget) — Supplies bitrate and the optional
sensb_req for target discovery. Most drivers do no not allow a fully customized
SENSB_REQ, the only parameter that can always be changed is the AFI byte, others may be
ignored.

Returns

Response data received from a remote target if found. The only response data attribute is
sensb_res.

Return type nfc.clf.RemoteTlarget

Raises nfc.clf.UnsupportedTargetError —The method is not supported or the target
argument requested an unsupported bitrate (or has a wrong technology type identifier).

sense_ttf (target)
Discover a Type F Target.

Activates the 13.56 MHz carrier signal and sends a SENSF_REQ command at the bitrate set by tar-
get.brty. If a SENSF_RES is received, returns a target object with the sensf_res attribute.

Parameters target (nfc.clf.RemoteTarget) — Supplies bitrate and the optional
sensf_req for target discovery. The default SENSF_REQ invites all targets to respond and
requests the system code information bytes.

Returns

Response data received from a remote target if found. The only response data attribute is
sensf_res.

Return type nfc.clf.RemoteTlarget

Raises nfc.clf.UnsupportedTargetError —The method is not supported or the target
argument requested an unsupported bitrate (or has a wrong technology type identifier).

sense_dep (farget)
Discover a NFC-DEP Target in active communication mode.

Activates the 13.56 MHz carrier signal and sends an ATR_REQ command at the bitrate set by target.brty.
If an ATR_RES is received, returns a target object with the atr_res attribute.

Note that some drivers (like pn531) may modify the transport data bytes length reduction value in
ATR_REQ and ATR_RES due to hardware limitations.

110 Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

Parameters target (nfc.clf.RemoteTarget) — Supplies bitrate and the mandatory
atr_req for target discovery. The bitrate may be one of ‘106A’, ‘212F’, or ‘424F’.

Returns

Response data received from a remote target if found. The only response data attribute is
atr_res. The actually sent and potentially modified ATR_REQ is also included as atr_req
attribute.

Return type nfc.clf.RemoteTarget

Raises nfc.clf.UnsupportedTargetError —The method is not supported or the target
argument requested an unsupported bitrate (or has a wrong technology type identifier).

listen_tta (target, timeout)

Listen as Type A Target.

Wiaits to receive a SENS_REQ command at the bitrate set by target.brty and sends the target.sens_res
response. Depending on the SENS_RES bytes, the Initiator then sends an RID_CMD (SENS_RES coded
for a Type 1 Tag) or SDD_REQ and SEL_REQ (SENS_RES coded for a Type 2/4 Tag). Responses are
then generated from the rid_res or sdd_res and sel_res attributes in target.

Note that none of the currently supported hardware can actually receive an RID_CMD, thus Type 1 Tag
emulation is impossible.

Parameters

* target (nfc.clf.LocalTarget)— Supplies bitrate and mandatory response data to
reply when being discovered.

* timeout (float) - The maximum number of seconds to wait for a discovery command.
Returns

Command data received from the remote Initiator if being discovered and to the extent
supported by the device. The first command received after discovery is returned as one of
the tt1_cmd, tt2_cmd or tt4_cmd attribute (note that unset attributes are always None).

Return type nfc.clf:-Locallarget
Raises

e nfc.clf.UnsupportedTargetError — The method is not supported or the target
argument requested an unsupported bitrate (or has a wrong technology type identifier).

* ValueError — A required target response attribute is not present or does not supply the
number of bytes expected.

listen_ttb (tfarget, timeout)

Listen as Type A Target.

Waits to receive a SENSB_REQ command at the bitrate set by target.brty and sends the target.sensb_res
response.

Note that none of the currently supported hardware can actually listen as Type B target.
Parameters

e target (nfc.clf.LocalTarget)— Supplies bitrate and mandatory response data to
reply when being discovered.

* timeout (f1oat)—The maximum number of seconds to wait for a discovery command.

Returns

7.2.

nfc.clf 111

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

nfcpy documentation, Release 1.0.4

Command data received from the remote Initiator if being discovered and to the extent
supported by the device. The first command received after discovery is returned as
tt4_cmd attribute.

Return type nfc.clf.-Locallarget
Raises

e nfc.clf.UnsupportedTargetError — The method is not supported or the target
argument requested an unsupported bitrate (or has a wrong technology type identifier).

* ValueError — A required target response attribute is not present or does not supply the
number of bytes expected.

listen_ttf£ (target, timeout)
Listen as Type A Target.

Waits to receive a SENSF_REQ command at the bitrate set by target.brty and sends the target.sensf_res
response. Then waits for a first command that is not a SENSF_REQ and returns this as the tt3_cmd
attribute.

Parameters

* target (nfc.clf.LocalTarget)— Supplies bitrate and mandatory response data to
reply when being discovered.

* timeout (float)—The maximum number of seconds to wait for a discovery command.
Returns

Command data received from the remote Initiator if being discovered and to the extent
supported by the device. The first command received after discovery is returned as
tt3_cmd attribute.

Return type nfc.clf.LocalTarget
Raises

e nfc.clf.UnsupportedTargetError — The method is not supported or the farget
argument requested an unsupported bitrate (or has a wrong technology type identifier).

* ValueError — A required target response attribute is not present or does not supply the
number of bytes expected.

listen_dep (target, timeout)
Listen as NFC-DEP Target.

Waits to receive an ATR_REQ (if the local device supports active communication mode) or a Type A or
F Target activation followed by an ATR_REQ in passive communication mode. The ATR_REQ is replied
with target.atr_res. The first DEP_REQ command is returned as the dep_req attribute along with atr_req
and atr_res. The psl_req and psl_res attributes are returned when the has Initiator performed a parameter
selection. The sens_res or sensf_res attributes are returned when activation was in passive communication

mode.
Parameters
e target (nfc.clf.LocalTarget)— Supplies mandatory response data to reply when
being discovered. All of sens_res, sdd_res, sel_res, sensf_res, and atr_res must be pro-
vided. The bitrate does not need to be set, an NFC-DEP Target always accepts discovery
at ‘106A’, ‘212F and ‘424F°.
* timeout (f1oat)—The maximum number of seconds to wait for a discovery command.
Returns

112

Chapter 7. Module Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

nfcpy documentation, Release 1.0.4

Command data received from the remote Initiator if being discovered and to the extent
supported by the device. The first command received after discovery is returned as
dep_req attribute.

Return type nfc.clf:-Locallarget

Raises

e nfc.clf.UnsupportedTargetError — The method is not supported by the local
hardware.

* ValueError — A required target response attribute is not present or does not supply the
number of bytes expected.

send_cmd_recv_rsp (farget, data, timeout)
Exchange data with a remote Target

Sends command data to the remote target discovered in the most recent call to one of the sense_xxx()
methods. Note that farget becomes invalid with any call to mute(), sense_xxx() or listen_xxx()

Parameters

* target (nfc.clf.RemoteTarget) — The target returned by the last successful call
of a sense_xxx() method.

* data (bytearray) - The binary data to send to the remote device.

* timeout (float) — The maximum number of seconds to wait for response data from
the remote device.

Returns Response data received from the remote device.

Return type bytearray

Raises nfc.clf.CommunicationError — When no data was received.

send_rsp_recv_cmd (farget, data, timeout)
Exchange data with a remote Initiator

Sends response data as the local rarget being discovered in the most recent call to one of the listen_xxx()
methods. Note that farget becomes invalid with any call to mute(), sense_xxx() or listen_xxx()

Parameters

e target (nfc.clf.LocalTarget)— The target returned by the last successful call of
a listen_xxx() method.

* data (bytearray)— The binary data to send to the remote device.

e timeout (float)— The maximum number of seconds to wait for command data from
the remote device.

Returns Command data received from the remote device.
Return type bytearray
Raises nfc.clf.CommunicationError — When no data was received.

get_max send data_size (target)
Returns the maximum number of data bytes for sending.

The maximum number of data bytes acceptable for sending with either send _cmd_recv_rsp () or
send_rsp_recv_cmd (). The value reflects the local device capabilities for sending in the mode de-
termined by target. It does not relate to any protocol capabilities and negotiations.

7.2. nfc.clf 113

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytearray

nfcpy documentation, Release 1.0.4

Parameters target (nfc.clf. Target) — The current local or remote communication tar-
get.

Returns Maximum number of data bytes supported for sending.
Return type int

get_max recv_data_size (farget)
Returns the maximum number of data bytes for receiving.

The maximum number of data bytes acceptable for receiving with either send_cmd_recv_rsp () or
send_rsp_recv_cmd (). The value reflects the local device capabilities for receiving in the mode
determined by target. It does not relate to any protocol capabilities and negotiations.

Parameters target (nfc.clf.Target) — The current local or remote communication tar-
get.

Returns Maximum number of data bytes supported for receiving.

Return type int

7.3 nfc.tag

* Type I Tag
* Type 2 Tag
* Type 3 Tag

* Type 4 Tag

class nfc.tag.Tag (clf, target)

Bases: object

The base class for all NFC Tags/Cards. The methods and attributes defined here are commonly available but
some may, depending on the tag product, also return a None value is support is not available.

Direct subclasses are the NFC Forum tag types: TypelTag, TypelTag, Type3Tag, TypedTag. Some of
them are further specialized in vendor/product specific classes.

class NDEF (fag)
Bases: object

The NDEF object type that may be read from Tag.ndef.

This class presents the NDEF management information and the actual NDEF message by a couple of
attributes. It is normally accessed from a Tag instance (further named fag) through the Tag.ndef
attribute for reading or writing NDEF records.

if tag.ndef is not None:
for record in tag.ndef.records:
print (record)
if tag.ndef.is_writeable:
from ndef import TextRecord
tag.ndef.records = [TextRecord("Hello World")]

tag
A readonly reference to the underlying tag object.

114

Chapter 7. Module Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

nfcpy documentation, Release 1.0.4

length

Length of the current NDEF message in bytes.

capacity

Maximum number of bytes for an NDEF message.

is_readable

True if the NDEF data are is readable.

is_writeable

True if the NDEF data area is writeable.

has_changed

The boolean attribute has_changed allows to determine whether the NDEF message on the tag is
different from the message that was read or written at an earlier time in the session. This may for
example be the case if the tag is build to dynamically present different content depending on some
state.

Note that reading this attribute involves a complete update of the Tag. NDEF instance and it iS possi-
ble that Tag. ndef is None after the update (e.g. tag gone during read or a dynamic tag that failed).
A robust implementation should always verify the value of the Tag. nde £ attribute.

if tag.ndef.has_changed and tag.ndef is not None:
for record in tag.ndef.records:
print (record)

The has_changed attribute can also be used to verify that NDEF records written to the tag are
identical to the NDEF records stored on the tag.

from ndef import TextRecord
tag.ndef.records = [TextRecord("Hello World")]
if tag.ndef.has_changed:
print ("the tag data differs from what was written")

records

Read or write a list of NDEF Records.
New in version 0.12.

This attribute is a convinience wrapper for decoding and encoding of the NDEF message data
octets. It uses the ndeflib module to return the list of ndef .Record instances decoded from
the NDEF message data or set the message data from a list of records.

from ndef import TextRecord
if tag.ndef is not None:
for record in tag.ndef.records:
print (record)
try:
tag.ndef.records = [TextRecord('Hello World'")]
except nfc.tag.TagCommandError as err:
print ("NDEF write failed: " + str(err))

Decoding is performed with a relaxed error handling strategy that ignores minor errors in the NDEF
data. The ndeflib does also support ‘strict’ and ‘ignore’ error handling which may be used like so:

from ndef import message_decoder, message_encoder
records = message_decoder (tag.ndef.octets, errors='strict'")
tag.ndef.octets = b''.Jjoin (message_encoder (records))

7.3. nfc.tag

115

https://ndeflib.readthedocs.io
https://ndeflib.readthedocs.io/en/stable/ndef.html#ndef.Record
https://ndeflib.readthedocs.io

nfcpy documentation, Release 1.0.4

octets
Read or write NDEF message data octets.

New in version 0.12.

The octets attribute returns the NDEF message data octets as bytes. A bytes or bytearray sequence
assigned to octets is immediately written to the NDEF message data area, unless the Tag memory is
write protected or to small.

if tag.ndef is not None:
print (hexlify (tag.ndef.octets) .decode())

identifier
The unique tag identifier.

ndef
An NDEF object if found, otherwise None.

is_present
True if the tag is within communication range.

is_authenticated
True if the tag was successfully authenticated.

dump ()
The dump() method returns a list of strings describing the memory structure of the tag, suitable for printing
with join(). The list format makes custom indentation a bit easier.

print ("\n".join (["\t" + line for line in tag.dump()]))

format (version=None, wipe=None)
Format the tag to make it NDEF compatible or erase content.

The format () method is highly dependent on the tag type, product and present status, for example a tag
that has been made read-only with lock bits can no longer be formatted or erased.

format () creates the management information defined by the NFC Forum to describes the NDEF data
area on the tag, this is also called NDEF mapping. The mapping may differ between versions of the
tag specifications, the mapping to apply can be specified with the version argument as an 8-bit integer
composed of a major version number in the most significant 4 bit and the minor version number in the
least significant 4 bit. If version is not specified then the highest possible mapping version is used.

If formatting of the tag is possible, the default behavior of format () is to update only the management
information required to make the tag appear as NDEF compatible and empty, previously existing data
could still be read. If existing data shall be overwritten, the wipe argument can be set to an 8-bit integer
that will be written to all available bytes.

The format () method returns True if formatting was successful, False if it failed for some reason,
or None if the present tag can not be formatted either because the tag does not support formatting or it is
not implemented in nfcpy.

protect (password=None, read_protect=False, protect_from=0)
Protect a tag against future write or read access.

protect () attempts to make a tag readonly for all readers if password is None, writeable only after
authentication if a password is provided, and readable only after authentication if a password is provided
and the read_protect flag is set. The password must be a byte or character sequence that provides sufficient
key material for the tag specific protect function (this is documented separately for the individual tag
types). As a special case, if password is set to an empty string the protect () method uses a default
manufacturer value if such is known.

116

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

The protect_from argument sets the first memory unit to be protected. Memory units are tag type specific,
for a Type 1 or Type 2 Tag a memory unit is 4 byte, for a Type 3 Tag it is 16 byte, and for a Type 4 Tag it
is the complete NDEF data area.

Note that the effect of protecting a tag without password can normally not be reversed.

The return value of protect () is either True or False depending on whether the operation was
successful or not, or None if the tag does not support custom protection (or it is not implemented).

authenticate (password)
Authenticate a tag with a password.

A tag that was once protected with a password requires authentication before write, potentially also read,
operations may be performed. The password must be the same as the password provided to protect ().
The return value indicates authentication success with True or False. For a tag that does not support
authentication the return value is None.

exception nfc.tag.TagCommandError (errno)
Bases: Exception

The base class for exceptions that are raised when a tag command has not returned the expected result or a a
lower stack error was raised.

The errno attribute holds a reason code for why the command has failed. Error numbers greater than zero
indicate a tag type specific error from one of the exception classes derived from TagCommandError (per tag
type module). Error numbers below and including zero indicate general errors:

nfc.tag.TIMEOUT_ERROR => unrecoverable timeout error
nfc.tag.RECEIVE_ERROR => unrecoverable transmission error
nfc.tag.PROTOCOL_ERROR => unrecoverable protocol error

The TagCommandError exception populates the message attribute of the general exception class with the
appropriate error description.

errno
Holds the error reason code.

class nfc.tag.TagEmulation
Bases: object

Base class for tag emulation classes.

7.3.1 Type 1 Tag

exception nfc.tag.ttl.TypelTagCommandError (errno)
Bases: nfc.tag. TagCommandError

Type 1 Tag specific exceptions. Sets errno to one of:

1 - CHECKSUM_ERROR
2 - RESPONSE_ERROR
3 - WRITE_ERROR

class nfc.tag.ttl.TypelTag (clf, target)
Bases: nfc.tag. Tag

Implementation of the NFC Forum Type 1 Tag Operation specification.

7.3. nfc.tag 117

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

nfcpy documentation, Release 1.0.4

The NFC Forum Type 1 Tag is based on the ISO 14443 Type A technology for frame structure and anticolli-
sion (detection) commands, and the Innovision (now Broadcom) Jewel/Topaz commands for accessing the tag
memory.

class NDEF (fag)
Bases: nfc.tag.NDEF

dump ()
Returns the tag memory blocks as a list of formatted strings.

dump () iterates over all tag memory blocks (8 bytes each) from block zero until the physical end of
memory and produces a list of strings that is intended for line by line printing. Multiple consecutive
memory block of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory blocks present.

Warning: For tags with more than 120 byte memory, the dump() method first overwrites the data block
to verify that it is backed by physical memory, then restores the original data. This is necessary because
Type 1 Tags do not indicate an error when reading beyond the physical memory space. Be cautious to
not remove a tag from the reader when using dump() as otherwise your data may be corrupted.

protect (password=None, read_protect=False, protect_from=0)
The implementation of nfc.tag. Tag.protect () for a generic type 1 tag is limited to setting the
NDEF data read-only for tags that are already NDEF formatted.

read id()
Returns the 2 byte Header ROM and 4 byte UID.

read _all ()
Returns the 2 byte Header ROM and all 120 byte static memory.

read_byte (addr)
Read a single byte from static memory area (blocks 0-14).

read_block (block)
Read an 8-byte data block at address (block * 8).

read_segment (segment)
Read one memory segment (128 byte).

write_byte (addr, data, erase=True)
Write a single byte to static memory area (blocks 0-14). The target byte is zero’d first if erase is True.

write_block (block, data, erase=True)
Write an 8-byte data block at address (block * 8). The target bytes are zero’d first if erase is True.

class nfc.tag.ttl_broadcom.Topaz (clf, target)

Bases: nfc.tag.ttl.TypelTag
The Broadcom Topaz is a small memory tag that can hold up to 94 byte ndef message data.

dump ()
Returns the tag memory blocks as a list of formatted strings.

dump () iterates over all tag memory blocks (8 bytes each) from block zero until the physical end of
memory and produces a list of strings that is intended for line by line printing. Multiple consecutive
memory block of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory blocks present.

118

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

Warning: For tags with more than 120 byte memory, the dump() method first overwrites the data block
to verify that it is backed by physical memory, then restores the original data. This is necessary because
Type 1 Tags do not indicate an error when reading beyond the physical memory space. Be cautious to
not remove a tag from the reader when using dump() as otherwise your data may be corrupted.

format (version=None, wipe=None)
Format a Topaz tag for NDEF use.

The implementation of nfc.tag. Tag. format () for a Topaz tag creates a capability container and
an NDEF TLV with length zero. Data bytes of the NDEF data area are left untouched unless the wipe
argument is set.

protect (password=None, read_protect=False, protect_from=0)
In addtion to nfc.tag.ttl.TypelTag.protect () this method tries to set the lock bits to irre-
versibly protect the tag memory. However, it appears that tags sold have the lock bytes write protected, so
this additional effort most likely doesn’t have any effect.

class nfc.tag.ttl_broadcom.Topaz512 (clf, target)
Bases: nfc.tag.ttl.TypelTag

The Broadcom Topaz-512 is a memory enhanced version that can hold up to 462 byte ndef message data.

dump ()
Returns the tag memory blocks as a list of formatted strings.

dump () iterates over all tag memory blocks (8 bytes each) from block zero until the physical end of
memory and produces a list of strings that is intended for line by line printing. Multiple consecutive
memory block of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory blocks present.

Warning: For tags with more than 120 byte memory, the dump() method first overwrites the data block
to verify that it is backed by physical memory, then restores the original data. This is necessary because
Type 1 Tags do not indicate an error when reading beyond the physical memory space. Be cautious to
not remove a tag from the reader when using dump() as otherwise your data may be corrupted.

format (version=None, wipe=None)
Format a Topaz-512 tag for NDEF use.

The implementation of nfc. tag. Tag. format () for a Topaz-512 tag creates a capability container, a
Lock Control and a Memory Control TLV, and an NDEF TLV with length zero. Data bytes of the NDEF
data area are left untouched unless the wipe argument is set.

protect (password=None, read_protect=False, protect_from=0)
In addtion to nfc.tag.ttl.TypelTag.protect () this method tries to set the lock bits to irre-
versibly protect the tag memory. However, it appears that tags sold have the lock bytes write protected, so
this additional effort most likely doesn’t have any effect.

7.3.2 Type 2 Tag

exception nfc.tag.tt2.Type2TagCommandError (errno)
Bases: nfc.tag. TagCommandError

Type 2 Tag specific exceptions. Sets errno to one of:

7.3. nfc.tag 119

nfcpy documentation, Release 1.0.4

1 - INVALID_SECTOR_ERROR
2 - INVALID_PAGE_ERROR
3 - INVALID_RESPONSE_ERROR

class nfc.tag.tt2.Type2Tag (clf, target)
Bases: nfc.tag. Tag

Implementation of the NFC Forum Type 2 Tag Operation specification.

The NFC Forum Type 2 Tag is based on the ISO 14443 Type A technology for frame structure and anticollision
(detection) commands, and the NXP Mifare commands for accessing the tag memory.

class NDEF (fag)
Bases: nfc.tag.NDEF

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

format (version=None, wipe=None)
Erase the NDEF message on a Type 2 Tag.

The format () method will reset the length of the NDEF message on a type 2 tag to zero, thus the tag
will appear to be empty. Additionally, if the wipe argument is set to some integer then format () will
overwrite all user date that follows the NDEF message TLV with that integer (mod 256). If an NDEF
message TLV is not present it will be created with a length of zero.

Despite it’s name, the format () method can not format a blank tag to make it NDEF compatible. This is
because the user data are of a type 2 tag can not be safely determined, also reading all memory pages until
an error response yields only the total memory size which includes an undetermined number of special
pages at the end of memory.

It is also not possible to change the NDEF mapping version, located in a one-time-programmable area of
the tag memory.

protect (password=None, read_protect=False, protect_from=0)
Protect the tag against write access, i.e. make it read-only.

TypelTag.protect () switches an NFC Forum Type 2 Tag to read-only state by setting all lock bits
to 1. This operation can not be reversed. If the tag is not an NFC Forum Tag, i.e. it is not formatted with
an NDEF Capability Container, the protect () method simply returns False.

A generic Type 2 Tag can not be protected with a password. If the password argument is provided, the
protect () method does nothing else than return False. The read_protect and protect_from arguments
are safely ignored.

read (page)
Send a READ command to retrieve data from the tag.

The page argument specifies the offset in multiples of 4 bytes (i.e. page number 1 will return bytes 4 to
19). The data returned is a byte array of length 16 or None if the block is outside the readable memory
range.

Command execution errors raise Type2TagCommandError.

write (page, data)
Send a WRITE command to store data on the tag.

120 Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

The page argument specifies the offset in multiples of 4 bytes. The data argument must be a string or
bytearray of length 4.

Command execution errors raise Type2TagCommandError.

sector_select (sector)
Send a SECTOR_SELECT command to switch the 1K address sector.

The command is only send to the tag if the sector number is different from the currently selected sector
number (set to 0 when the tag instance is created). If the command was successful, the currently selected
sector number is updated and further read () and write () commands will be relative to that sector.

Command execution errors raise Type2TagCommandError.

transceive (data, timeout=0.1, retries=2)
Send a Type 2 Tag command and receive the response.

transceive () is a type 2 tag specific wrapper around the nfc.ContactlessFrontend.
exchange () method. It can be used to send custom commands as a sequence of data bytes to the tag
and receive the response data bytes. If timeout seconds pass without a response, the operation is aborted
and TagCommandError raised with the TIMEOUT_ERROR error code.

Command execution errors raise Type2TagCommandError.

class nfc.tag.tt2.Type2TagMemoryReader (fag)
Bases: object

The memory reader provides a convenient way to read and write Type2Tag memory. Once instantiated with a
proper type 2 tag object the tag memory can then be accessed as a linear sequence of bytes, without any consid-
erations of sector or page boundaries. Modified bytes can be written to tag memory with synchronize ().

clf = nfc.ContactlessFrontend(...)

tag = clf.connect (rdwr={'on-connect': None})

if isinstance(tag, nfc.tag.tt2.Type2Tagqg):
tag_memory = nfc.tag.tt2.Type2TagMemoryReader (tagqg)
tag_memory[16:19] = [0x03, 0x00, OxFE]
tag_memory.synchronize ()

synchronize ()
Write pages that contain modified data back to tag memory.

class nfc.tag.tt2_nxp.MifareUltralight (clf, target)
Bases: nfc.tag.tt2. Type2Tag

Mifare Ultralight is a simple type 2 tag with no specific features. It can store up to 46 byte NDEF message data.
This class does not do much more than to provide the known memory size.

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.MifareUltralightC (clf, target)
Bases: nfc.tag.tt2.Type2Tag

Mifare Ultralight C provides more memory, to store up to 142 byte NDEF message data, and can be password
protected.

class NDEF (fag)
Bases: nfc.tag.tt2.NDEF

7.3. nfc.tag 121

https://docs.python.org/3/library/functions.html#object

nfcpy documentation, Release 1.0.4

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

protect (password=None, read_protect=False, protect_from=0)
Protect a Mifare Ultralight C Tag.

A Mifare Ultrlight C Tag can be provisioned with a custom password (or the default manufacturer key if
the password is an empty string or bytearray).

A non-empty password must provide at least 128 bit key material, in other words it must be a string or
bytearray of length 16 or more.

If password is not None, the first protected memory page can be specified with the protect_from integer
argument. A memory page is 4 byte and the total number of pages is 48. A protect_from argument of
48 effectively disables memory protection. A protect_from argument of 3 protects all user data pages
including the bitwise one-time-programmable page 3. Any value less than 3 or more than 48 is accepted
but to the same effect as if 3 or 48 were specified. If effective protection starts at page 3 and the tag is
formatted for NDEF, the protect () method does also modify the NDEF read/write capability byte.

If password is not None and read_protect is True then the tag memory content will also be protected
against read access, i.e. successful authentication will be required to read protected pages.

The protect () method verifies a password change by authenticating with the new password after all
modifications were made and returns the result of authenticate ().

Warning: If protect is called without a password, the default Type 2 Tag protection method will set
the lock bits to readonly. This process is not reversible.

authenticate (password)
Authenticate with a Mifare Ultralight C Tag.

autenticate () executes the Mifare Ultralight C mutual authentication protocol to verify that the pass-
word argument matches the key that is stored in the card. A new card key can be set with protect ().

The password argument must be a string with either O or at least 16 bytes. A zero length password string
indicates that the factory default card key be used. From a password with 16 or more bytes the first 16
byte are taken as card key, remaining bytes are ignored. A password length between 1 and 15 generates a
ValueError exception.

The authentication result is True if the password was confirmed and False if not.

class nfc.tag.tt2_nxp.NTAG203 (clf, target)

Bases: nfc.tag.tt2.Type2Tag

The NTAG203 is a plain memory Tag with 144 bytes user data memory plus a 16-bit one-way counter. It does
not have any security features beyond the standard lock bit mechanism that permanently disables write access.

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

122

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

protect (password=None, read_protect=False, protect_from=0)
Set lock bits to disable future memory modifications.

If password is None, all memory pages except the 16-bit counter in page 41 are protected by setting the
relevant lock bits (note that lock bits can not be reset). If valid NDEF management data is found in page
4, protect() also sets the NDEF write flag to read-only.

The NTAG203 can not be password protected. If a password argument is provided, the protect() method
always returns False.

class nfc.tag.tt2_nxp.NTAG21x (clf, target)
Bases: nfc.tag.tt2.Typel2Tag

Base class for the NTAG21x family (210/212/213/215/216). The methods and attributes documented here are
supported for all NTAG21x products.

All NTAG21x products support a simple password protection scheme that can be configured to restrict write
as well as read access to memory starting from a selected page address. A factory programmed ECC signature
allows to verify the tag unique identifier.

class NDEF (fag)
Bases: nfc.tag.tt2.NDEF

signature
The 32-byte ECC tag signature programmed at chip production. The signature is provided as a string and
can only be read.

The signature attribute is always loaded from the tag when it is accessed, i.e. it is not cached. If commu-
nication with the tag fails for some reason the signature attribute is set to a 32-byte string of all zeros.

protect (password=None, read_protect=False, protect_from=0)
Set password protection or permanent lock bits.

If the password argument is None, all memory pages will be protected by setting the relevant lock bits
(note that lock bits can not be reset). If valid NDEF management data is found, protect() also sets the
NDEEF write flag to read-only.

All Tags of the NTAG21x family can alternatively be protected by password. If a password argument
is provided, the protect() method writes the first 4 byte of the password string into the Tag’s password
(PWD) memory bytes and the following 2 byte of the password string into the password acknowledge
(PACK) memory bytes. Factory default values are used if the password argument is an empty string. Lock
bits are not set for password protection.

The read_protect and protect_from arguments are only evaluated if password is not None. If read_protect
is True, the memory protection bit (PROT) is set to require password verification also for reading of
protected memory pages. The value of protect_from determines the first password protected memory page
(one page is 4 byte) with the exception that the smallest set value is page 3 even if protect_from is smaller.

authenticate (password)
Authenticate with password to access protected memory.

An NTAG21x implements a simple password protection scheme. The reader proofs possession of a share
secret by sending a 4-byte password and the tag proofs possession of a shared secret by returning a 2-byte
password acknowledge. Because password and password acknowledge are transmitted in plain text special
considerations should be given to under which conditions authentication is performed. If, for example, an
attacker is able to mount a relay attack both secret values are easily lost.

The password argument must be a string of length zero or at least 6 byte characters. If the password length
is zero, authentication is performed with factory default values. If the password contains at least 6 bytes,
the first 4 byte are send to the tag as the password secret and the following 2 byte are compared against the
password acknowledge that is received from the tag.

7.3. nfc.tag 123

nfcpy documentation, Release 1.0.4

The authentication result is True if the password was confirmed and False if not.

class nfc.tag.tt2_nxp.NTAG210 (clf, target)
Bases: nfc.tag.tt2 _nxp.NTAG21x

The NTAG210 provides 48 bytes user data memory, password protection, originality signature and a UID mirror
function.

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.NTAG212 (clf, target)
Bases: nfc.tag.tt2 _nxp.NTAG21x

The NTAG212 provides 128 bytes user data memory, password protection, originality signature and a UID
mirror function.

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.NTAG213 (clf, target)
Bases: nfc.tag.tt2_nxp.NTAG21x

The NTAG213 provides 144 bytes user data memory, password protection, originality signature, a tag read
counter and a mirror function for the tag unique identifier and the read counter.

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.NTAG215 (clf, target)
Bases: nfc.tag.tt2_nxp.NTAG21x

The NTAG215 provides 504 bytes user data memory, password protection, originality signature, a tag read
counter and a mirror function for the tag unique identifier and the read counter.

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.NTAG216 (clf, target)
Bases: nfc.tag.tt2 _nxp.NTAG21x

The NTAG216 provides 888 bytes user data memory, password protection, originality signature, a tag read
counter and a mirror function for the tag unique identifier and the read counter.

124 Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.MifareUltralightEV1 (clf, target, product)
Bases: nfc.tag.tt2_nxp.NTAG21x

Mifare Ultralight EV1

class nfc.tag.tt2_nxp.MFOUL11 (clf, target)
Bases: nfc.tag.tt2 _nxp.MifareUltralightEV]1

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.MFOULH11 (clf, target)
Bases: nfc.tag.tt2 _nxp.MifareUltralightEV1

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.MFOUL21 (clf, target)
Bases: nfc.tag.tt2 _nxp.MifareUltralightEVI

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.MFOULH21 (clf, target)
Bases: nfc.tag.tt2 _nxp.MifareUltralightEV1

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.NTAGI2C (clf, target)
Bases: nfc.tag.tt2.Type2Tag

class nfc.tag.tt2_nxp.NT3H1101 (clf, target)
Bases: nfc.tag.tt2 _nxp.NTAGI2C

7.3. nfc.tag 125

nfcpy documentation, Release 1.0.4

NTAG I2C 1K.

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

class nfc.tag.tt2_nxp.NT3H1201 (clf, target)

Bases: nfc.tag.tt2 _nxp.NTAGI2C
NTAG I2C 2K.

dump ()
Returns the tag memory pages as a list of formatted strings.

dump () iterates over all tag memory pages (4 bytes each) from page zero until an error response is re-
ceived and produces a list of strings that is intended for line by line printing. Note that multiple consecutive
memory pages of identical content may be reduced to fewer lines of output, so the number of lines returned
does not necessarily correspond to the number of memory pages.

7.3.3 Type 3 Tag

exception nfc.tag.tt3.Type3TagCommandError (errno)

Bases: nfc.tag. TagCommandError

class nfc.tag.tt3.ServiceCode (number, attribute)

Bases: object

A service code provides access to a group of data blocks located on the card file system. A service code is a 16-
bit structure composed of a 10-bit service number and a 6-bit service attribute. The service attribute determines
the service type and whether authentication is required.

pack ()
Pack the service code for transmission. Returns a 2 byte string.

classmethod unpack (s)
Unpack and return a ServiceCode from a byte string.

class nfc.tag.tt3.BlockCode (number, access=0, service=0)

Bases: object

A block code indicates a data block within a service. A block code is a 16-bit or 24-bit structure composed of a
length bit (1b if the block number is less than 256), a 3-bit access mode, a 4-bit service list index and an 8-bit or
16-bit block number.

pack ()
Pack the block code for transmission. Returns a 2-3 byte string.

class nfc.tag.tt3.Type3Tag (clf, target)

Bases: nfc.tag. Tag
Implementation of the NFC Forum Type 3 Tag specification.

The NFC Forum Type 3 Tag is based on the Sony FeliCa protocol and command specification. An NFC Forum
compliant Type 3 Tag responds to a FeliCa polling command with system code 0x12FC and was configured to
support service code 0x000B for NDEF data read and service code 0x0009 for NDEF data write (the latter may
not be present if the tag is read-only) without encryption.

126

Chapter 7. Module Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

nfcpy documentation, Release 1.0.4

class NDEF (fag)
Bases: nfc.tag.NDEF

dump ()
Read all data blocks of an NFC Forum Tag.

For an NFC Forum Tag (system code 0x12FC) dump () reads all data blocks from service 0x000B (NDEF
read service) and returns a list of strings suitable for printing. The number of strings returned does not
necessarily reflect the number of data blocks because a range of data blocks with equal content is reduced
to fewer lines of output.

dump_service (sc)
Read all data blocks of a given service.

dump_service () reads all data blocks from the service with service code sc and returns a list of strings
suitable for printing. The number of strings returned does not necessarily reflect the number of data blocks
because a range of data blocks with equal content is reduced to fewer lines of output.

format (version=None, wipe=None)
Format and blank an NFC Forum Type 3 Tag.

A generic NFC Forum Type 3 Tag can be (re)formatted if it is in either one of blank, initialized or readwrite
state. By formatting, all contents of the attribute information block is overwritten with values determined.
The number of user data blocks is determined by reading all memory until an error response. Similarily,
the maximum number of data block that can be read or written with a single command is determined by
sending successively increased read and write commands. The current data length is set to zero. The
NDEF mapping version is set to the latest known version number (1.0), unless the version argument is
provided and it’s major version number corresponds to one of the known major version numbers.

By default, no data other than the attribute block is modified. To overwrite user data the wipe argument
must be set to an integer value. The lower 8 bits of that value are written to all data bytes that follow the
attribute block.

polling (system_code=65535, request_code=0, time_slots=0)
Aquire and identify a card.

The Polling command is used to detect the Type 3 Tags in the field. It is also used for initialization and
anti-collision.

The system_code identifies the card system to acquire. A card can have multiple systems. The first system
that matches system_code will be activated. A value of Oxff for any of the two bytes works as a wild-
card, thus Oxffff activates the very first system in the card. The card identification data returned are the
Manufacture ID (IDm) and Manufacture Parameter (PMm).

The request_code tells the card whether it should return additional information. The default value O re-
quests no additional information. Request code 1 means that the card shall also return the system code,
so polling for system code Oxffff with request code 1 can be used to identify the first system on the card.
Request code 2 asks for communication performance data, more precisely a bitmap of possible communi-
cation speeds. Not all cards provide that information.

The number of time_slots determines whether there’s a chance to receive a response if multiple Type 3
Tags are in the field. For the reader the number of time slots determines the amount of time to wait for a
response. Any Type 3 Tag in the field, i.e. powered by the field, will choose a random time slot to respond.
With the default fime_slots value 0 there will only be one time slot available for all responses and multiple
responses would produce a collision. More time slots reduce the chance of collisions (but may result in an
application working with a tag that was just accidentially close enough). Only specific values should be
used for time_slots, those are 0, 1, 3, 7, and 15. Other values may produce unexpected results depending
on the tag product.

7.3. nfc.tag 127

nfcpy documentation, Release 1.0.4

polling () returns either the tuple (IDm, PMm) or the tuple IDm, PMm, additional information) de-
pending on the response lengt, all as bytearrays.

Command execution errors raise TagCommandError.

read_without_encryption (service_list, block_list)

Read data blocks from unencrypted services.

This method sends a Read Without Encryption command to the tag. The data blocks to read are indicated
by a sequence of BlockCode objects in block_list. Each block code must reference a ServiceCode
object from the iterable service_list. If any of the blocks and services do not exist, the tag will stop
processing at that point and return a two byte error status. The status bytes become the errno value of
the TagCommandError exception.

As an example, the following code reads block 5 from service 16 (service type ‘random read-write w/o
key’) and blocks O to 1 from service 80 (service type ‘random read-only w/o key’):

scl = nfc.tag.tt3.ServiceCode (16, 0x09)
sc2 = nfc.tag.tt3.ServiceCode (80, 0x0B)
bcl = nfc.tag.tt3.BlockCode (5, service=0)
bc2 = nfc.tag.tt3.BlockCode (0, service=l)
bc3 = nfc.tag.tt3.BlockCode (1, service=1)
try:
data = tag.read_without_encryption([scl, sc2], [bcl, bc2, bc3])
except nfc.tag.TagCommandError as e:
if e.errno > 0x00FF:
print ("the tag returned an error status")
else:
print ("command failed with some other error")

Command execution errors raise TagCommandError.

read_ from ndef service (*blocks)

Read block data from an NDEF compatible tag.

This is a convinience method to read block data from a tag that has system code 0x12FC (NDEF). For
other tags this method simply returns None. All arguments are block numbers to read. To actually pass
a list of block numbers requires unpacking. The following example calls would have the same effect of
reading 32 byte data from from blocks 1 and 8.:

data = tag.read_from ndef_service(l, 8)
data = tag.read_from_ndef_service(xlist (1, 8))

Command execution errors raise TagCommandError.

write_without_encryption (service_list, block_list, data)

Write data blocks to unencrypted services.

This method sends a Write Without Encryption command to the tag. The data blocks to overwrite are indi-
cated by a sequence of B1ockCode objects in the parameter block_list. Each block code must reference
one of the ServiceCode objects in the iterable service_list. If any of the blocks or services do not exist,
the tag will stop processing at that point and return a two byte error status. The status bytes become the
errno value of the TagCommandError exception. The data to write must be a byte string or array of
length 16 *« len(block_list).

As an example, the following code writes 16 x "\xAA" to block 5 of service 16, 16 x "\xBB" to
block 0 of service 80 and 16 * "\xCC" to block 1 of service 80 (all services are writeable without key):

scl = nfc.tag.tt3.ServiceCode (16, 0x09)
sc2 = nfc.tag.tt3.ServiceCode (80, 0x09)

(continues on next page)

128

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

(continued from previous page)

bcl = nfc.tag.tt3.BlockCode (5, service=0)
bc2 = nfc.tag.tt3.BlockCode (0, service=l)
bc3 = nfc.tag.tt3.BlockCode (1, service=1)
sc_list = [scl, sc2]
bc_list = [bcl, bc2, bc3]
data = 16 = "\xAA" + 16 x "\xBB" + 16 x "\xCC"
try:
data = tag.write_without_encryption(sc_list, bc_list, data)
except nfc.tag.TagCommandError as e:
if e.errno > 0x00FF:
print ("the tag returned an error status")
else:

print ("command failed with some other error")

Command execution errors raise TagCommandError.

write to _ndef service (data, *blocks)
Write block data to an NDEF compatible tag.

This is a convinience method to write block data to a tag that has system code 0x12FC (NDEF). For other
tags this method simply does nothing. The data to write must be a string or bytearray with length equal 16
x len (blocks). All parameters following data are interpreted as block numbers to write. To actually
pass a list of block numbers requires unpacking. The following example calls would have the same effect
of writing 32 byte zeros into blocks 1 and 8.:

tag.write_to_ndef_service (32 % "\0", 1, 8)
tag.write_to_ndef_service (32 % "\0", xlist(1l, 8))

Command execution errors raise TagCommandError.

send_cmd_recv_rsp (cmd_code, cmd_data, timeout, send_idm=True, check_status=True)
Send a command and receive a response.

This low level method sends an arbitrary command with the 8-bit integer cmd_code, followed by the
captured tag identifier (IDm) if send_idm is True and the byte string or bytearray cmd_data. It then waits
timeout seconds for a response, verifies that the response is correctly formatted and, if check_status is
True, that the status flags do not indicate an error.

All errors raise a TagCommandError exception. Errors from response status flags produce an errno
that is greater than 255, all other errors are below 256.

class nfc.tag.tt3.Type3TagEmulation (clf, target)
Bases: nfc.tag.TagEmulation

Framework for Type 3 Tag emulation.

class nfc.tag.tt3_sony.FelicaStandard (clf, target)
Bases: nfc.tag.tt3.Type3Tag

Standard FeliCa is a range of FeliCa OS based card products with a flexible file system that supports multiple
applications and services on the same card. Services can individually be protected with a card key and all
communication with protected services is encrypted.

dump ()
Read all data blocks of an NFC Forum Tag.

For an NFC Forum Tag (system code 0x12FC) dump () reads all data blocks from service 0x000B (NDEF
read service) and returns a list of strings suitable for printing. The number of strings returned does not
necessarily reflect the number of data blocks because a range of data blocks with equal content is reduced
to fewer lines of output.

7.3. nfc.tag 129

nfcpy documentation, Release 1.0.4

request_service (service_list)

Verify existence of a service (or area) and get the key version.

Each service (or area) to verify must be given as a ServiceCode in the iterable service_list. The key
versions are returned as a list of 16-bit integers, in the order requested. If a specified service (or area) does
not exist, the key version will be OxFFFF.

Command execution errors raise TagCommandError.

request_response ()

Verify that a card is still present and get its operating mode.

The Request Response command returns the current operating state of the card. The operating state
changes with the authentication process, a card is in Mode 0 after power-up or a Polling command, transi-
tions to Mode 1 with Authenticationl, to Mode 2 with Authentication2, and Mode 3 with any of the card
issuance commands. The request_response () method returns the mode as an integer.

Command execution errors raise TagCommandError.

search_service_ code (service_index)

Search for a service code that corresponds to an index.

The Search Service Code command provides access to the iterable list of services and areas within the
activated system. The service_index argument may be any value from O to Oxffff. As long as there is a
service or area found for a given service_index, the information returned is a tuple with either one or two
16-bit integer elements. Two integers are returned for an area definition, the first is the area code and the
second is the largest possible service index for the area. One integer, the service code, is returned for a
service definition. The return value is None if the service_index was not found.

For example, to print all services and areas of the active system:

for i in xrange (0x10000) :

area_or_service = tag.search_service_code (1)
if area_or_service is None:

break
elif len(area_or_service) == 1:

sc = area_or_service[0]

print (nfc.tag.tt3.ServiceCode(sc >> 6, sc & 0x3f))
elif len (area_or_service) ==
area_code, area_last = area_or_service
print ("Area —— ".format (area_code, area_last))

Command execution errors raise TagCommandError.

request_system_code ()

Return all system codes that are registered in the card.

A card has one or more system codes that correspond to logical partitions (systems). Each system has a
system code that could be used in a polling command to activate that system. The system codes responded
by the card are returned as a list of 16-bit integers.

for system_code in tag.request_system_code () :
print ("System ".format (system_code))

Command execution errors raise TagCommandError.

class nfc.tag.tt3_sony.FelicaMobile (clf, target)

Bases: nfc.tag.tt3 sony.FelicaStandard

Mobile FeliCa is a modification of FeliCa for use in mobile phones. This class does currently not implement
anything specific beyond recognition of the Mobile FeliCa OS version.

130

Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

class nfc.tag.tt3_sony.Felicalite (clf, target)
Bases: nfc.tag.tt3.Type3Tag

FeliCa Lite is a version of FeliCa with simplified file system and security functions. The usable memory is 13
blocks (one block has 16 byte) plus a one block subtraction register. The tag can be configured with a card key
to authenticate the tag and protect integrity of data reads.

class NDEF (fag)
Bases: nfc.tag.tt3.NDEF

dump ()
Read all data blocks of an NFC Forum Tag.

For an NFC Forum Tag (system code 0x12FC) dump () reads all data blocks from service 0x000B (NDEF
read service) and returns a list of strings suitable for printing. The number of strings returned does not
necessarily reflect the number of data blocks because a range of data blocks with equal content is reduced
to fewer lines of output.

protect (password=None, read_protect=False, protect_from=0)
Protect a FeliCa Lite Tag.

A FeliCa Lite Tag can be provisioned with a custom password (or the default manufacturer key if the
password is an empty string or bytearray) to ensure that data retrieved by future read operations, after
authentication, is genuine. Read protection is not supported.

A non-empty password must provide at least 128 bit key material, in other words it must be a string or
bytearray of length 16 or more.

The memory unit for the value of protect_from is 16 byte, thus with protect_from=2 bytes 0 to 31 are
not protected. If protect_from is zero (the default value) and the Tag has valid NDEF management data,
the NDEF RW Flag is set to read only.

authenticate (password)
Authenticate a FeliCa Lite Tag.

A FeliCa Lite Tag is authenticated by a procedure that allows both the reader and the tag to calculate a
session key from a random challenge send by the reader and a key that is securely stored on the tag and
provided to authenticate () asthe password argument. If the tag was protected with an earlier call to
protect () then the same password should successfully authenticate.

After authentication the read_with mac () method can be used to read data such that it can not be
falsified on transmission.

format (version=16, wipe=None)
Format a FeliCa Lite Tag for NDEF.

read_without_mac (*blocks)
Read a number of data blocks without integrity check.

This method accepts a variable number of integer arguments as the block numbers to read. The blocks are
read with service code 0x000B (NDEF).

Tag command errors raise TagCommandError.

read_with_mac (*blocks)
Read a number of data blocks with integrity check.

This method accepts a variable number of integer arguments as the block numbers to read. The blocks
are read with service code 0x000B (NDEF). Along with the requested block data the tag returns a mes-
sage authentication code that is verified before data is returned. If verification fails the return value of
read with mac () is None.

A RuntimeError exception is raised if the tag was not authenticated before calling this method.

7.3. nfc.tag 131

https://docs.python.org/3/library/exceptions.html#RuntimeError

nfcpy documentation, Release 1.0.4

Tag command errors raise TagCommandError.

write_without_mac (data, block)
Write a data block without integrity check.

This is the standard write method for a FeliCa Lite. The 16-byte string or bytearray data is written to the
numbered block in service 0x0009 (NDEF write service).

data = bytearray(range(16)) # 0x00, 0x01, ... 0xO0F
try: tag.write_without_mac(data, 5) # write block 5
except nfc.tag.TagCommandError:

print ("something went wrong")

Tag command errors raise TagCommandError.

class nfc.tag.tt3_sony.FelicaliteS (clf, target)
Bases: nfc.tag.tt3 _sony.FelicalLite

FeliCa Lite-S is a version of FeliCa Lite with enhanced security functions. It provides mutual authentication
were both the tag and the reader must demonstrate posession of the card key before data writes can be made. It
is also possible to require mutual authentication for data reads.

class NDEF (fag)
Bases: nfc.tag.tt3_sony.NDEF

dump ()
Read all data blocks of an NFC Forum Tag.

For an NFC Forum Tag (system code 0x12FC) dump () reads all data blocks from service 0x000B (NDEF
read service) and returns a list of strings suitable for printing. The number of strings returned does not
necessarily reflect the number of data blocks because a range of data blocks with equal content is reduced
to fewer lines of output.

protect (password=None, read_protect=False, protect_from=0)
Protect a FeliCa Lite-S Tag.

A FeliCa Lite-S Tag can be write and read protected with a custom password (or the default manufacturer
key if the password is an empty string or bytearray). Note that the read_protect flag is only evaluated when
a password is provided.

A non-empty password must provide at least 128 bit key material, in other words it must be a string or
bytearray of length 16 or more.

The memory unit for the value of protect_from is 16 byte, thus with protect_from=2 bytes 0 to 31 are
not protected. If protect_from is zero (the default value) and the Tag has valid NDEF management data,
the NDEF RW Flag is set to read only.

authenticate (password)
Mutually authenticate with a FeliCa Lite-S Tag.

FeliCa Lite-S supports enhanced security functions, one of them is the mutual authentication performed
by this method. The first part of mutual authentication is to authenticate the tag with FelicalLite.
authenticate (). If successful, the shared session key is used to generate the integrity check value for
write operation to update a specific memory block. If that was successful then the tag is ensured that the
reader has the correct card key.

After successful authentication the read with mac () and write with mac () methods can be
used to read and write data such that it can not be falsified on transmission.

write_with_mac (data, block)
Write one data block with additional integrity check.

132 Chapter 7. Module Reference

nfcpy documentation, Release 1.0.4

If prior to calling this method the tag was not authenticated, a Runt imeError exception is raised.
Command execution errors raise TagCommandError.

class nfc.tag.tt3_sony.FelicaPlug (clf, target)
Bases: nfc.tag.tt3.Type3Tag

FeliCa Plug is a contactless communication interface module for microcontrollers.

7.3.4 Type 4 Tag

exception nfc.tag.tt4.TypedTagCommandError (errno)
Bases: nfc.tag. TagCommandError

Type 4 Tag exception class. Beyond the generic error values from TagCommandError this class covers ISO

7816-4 response APDU error codes.

class nfc.tag.tt4d.TypedTag (clf, target)
Bases: nfc.tag. Tag

Implementation of the NFC Forum Type 4 Tag operation specification.

The NFC Forum Type 4 Tag is based on ISO/IEC 14443 DEP protocol for Type A and B modulation and uses

ISO/IEC 7816-4 command and response APDU .

class NDEF (fag)
Bases: nfc.tag.NDEF

dump ()
Returns tag data as a list of formatted strings.

The dump () method provides useful output only for NDEF formatted Type 4 Tags. Each line that is

returned contains a hexdump of 16 octets from the NDEF data file.

format (version=None, wipe=None)
Erase the NDEF message on a Type 4 Tag.

The format () method writes the length of the NDEF message on a Type 4 Tag to zero, thus the tag will
appear to be empty. If the wipe argument is set to some integer then format () will also overwrite all

user data with that integer (mod 256).

Despite it’s name, the format () method can not format a blank tag to make it NDEF compatible; this

requires proprietary information from the manufacturer.

transceive (data, timeout=None)
Transmit arbitrary data and receive the response.

This is a low level method to send arbitrary data to the tag. While it should almost always be better to use
send_apdu () this is the only way to force a specific timeout value (which is otherwise derived from the

Tag’s answer to select). The timeout value is expected as a float specifying the seconds to wait.

send_apdu (cla, ins, pl, p2, data=None, mri=0, check_status=True)
Send an ISO/IEC 7816-4 APDU to the Type 4 Tag.

The 4 byte APDU header (class, instruction, parameter 1 and 2) is constructed from the first four parame-
ters (cla, ins, p1, p2) without interpretation. The byte string data argument represents the APDU command
data field. It is encoded as a short or extended length field followed by the data bytes. The length field
is not transmitted if data is None or an empty string. The maximum acceptable number of response data
bytes is given with the max-response-length mrl argument. The value of mrl is transmitted as the 7816-4

APDU Le field after appropriate conversion.

7.3. nfc.tag

133

https://docs.python.org/3/library/exceptions.html#RuntimeError

nfcpy documentation, Release 1.0.4

By default, the response is returned as a byte array not including the status word, a
TypedTagCommandError exception is raised for any status word other than 9000h. Response sta-
tus verification can be disabled with check_status set to False, the byte array will then include the response
status word at the last two positions.

Transmission errors always raise a Type4 TagCommandError exception.

class nfc.tag.ttd.TypedATagqg (clf, target)
Bases: nfc.tag.tt4.TypedTag

class nfc.tag.tt4.TypedBTag (clf, target)
Bases: nfc.tag.tt4.TypedTag

7.4 nfc.llcp

The nfc.llcp module implements the NFC Forum Logical Link Control Protocol (LLCP) specification and provides a
socket interface to use the connection-less and connection-mode transport facilities of LLCP.

7.4.1 nfc.llcp.Socket

class nfc.llcp.Socket (lic, sock_type)
Bases: object

Create a new LLCP socket with the given socket type. The socket type should be one of:

e nfc.1llcp.LOGICAL_DATA_LINK for best-effort communication using LLCP connection-less PDU
exchange

e nfc.llcp.DATA_LINK_CONNECTION for reliable communication using LLCP connection-mode
PDU exchange

e nfc.llcp.llc.RAW_ACCESS_POINT for unregulated LLCP PDU exchange (useful to implement
test programs)

1llc
The LogicallinkController instance to which this socket belongs. This attribute is read-only.

resolve (name)
Resolve a service name into an address. This may involve conversation with the remote service discovery
component if the name is hasn’t yet been resolved. The return value is the service access point address for
the service name bound at the remote device. The address value O indicates that the remote device does
not have a service with the requested name. The address value 1 indicates that the remote device has a data
link connection service with the requested name that can only be connected by service name. The return
value is None when communication with the peer device terminated while waiting for a response.

setsockopt (option, value)
Set the value of the given socket option and return the current value which may have been corrected if it
was out of bounds.

getsockopt (option)
Return the value of the given socket option.

bind (address=None)
Bind the socket to address. The socket must not already be bound. The address may be a service name
string, a service access point number, or it may be omitted. If address is a well-known service name the
socket will be bound to the corresponding service access point address, otherwise the socket will be bound
to the next available service access point address between 16 and 31 (inclusively). If address is a number

134 Chapter 7. Module Reference

https://docs.python.org/3/library/functions.html#object

nfcpy documentation, Release 1.0.4

between 32 and 63 (inclusively) the socket will be bound to that service access point address. If the address
argument is omitted the socket will be bound to the next available service access point address between 32
and 63.

connect (address)
Connect to a remote socket at address. Address may be a service name string or a service access point
number.

listen (backlog)
Mark a socket as a socket that will be used to accept incoming connection requests using accept(). The
backlog defines the maximum length to which the queue of pending connections for the socket may grow.
A backlog of zero disables queuing of connection requests.

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return
value is a new socket object usable to send and receive data on the connection.

send (data, flags=0)
Send data to the socket. The socket must be connected to a remote socket. Returns a boolean value that
indicates success or failure. A false value is typically an indication that the socket or connection was
closed.

sendto (data, addr, flags=0)
Send data to the socket. The socket should not be connected to a remote socket, since the destination
socket is specified by addr. Returns a boolean value that indicates success or failure. Failure to send is
generally an indication that the socket was closed.

recv ()
Receive data from the socket. The return value is a bytes object representing the data received. The maxi-
mum amount of data that may be returned is determined by the link or connection maximum information
unit size.

recvfrom ()
Receive data from the socket. The return value is a pair (bytes, address) where string is a string representing
the data received and address is the address of the socket sending the data.

poll (event, timeout=None)
Wait for a socket event. Posssible event values are the strings “recv”, “send” and “acks”. Whent the
timeout is present and not None, it should be a floating point number specifying the timeout for the
operation in seconds (or fractions thereof). For “recv” or “send” the pol1 () method returns True if a
next recv () or send () operation would be non-blocking. The “acks” event may only be used with a
data-link-connection type socket; the call then returns True if the counter of received acknowledgements
was greater than zero and decrements the counter by one.

getsockname ()
Obtain the address to which the socket is bound. For an unbound socket the returned value is None.

getpeername ()
Obtain the address of the peer connected on the socket. For an unconnected socket the returned value is
None.

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more
data Sockets are automatically closed when the logical link controller terminates (gracefully or by link
disruption). A connection-mode socket will attempt to disconnect the data link connection (if in connected
state).

7.4.

nfc.llcp 135

nfcpy documentation, Release 1.0.4

7.4.2 nfc.llcp.llc.LogicalLinkController

class nfc.llcp.llc.LogicallLinkController (**options)
Bases: object

7.5 nfc.shep

The nfc.snep module implements the NFC Forum Simple NDEF Exchange Protocol (SNEP) specification and provides
a server and client class for applications to easily send or receive SNEP messages.

7.5.1 nfc.snep.SnepServer

class nfc.snep.SnepServer (llc, service_name="urn:nfc:sn:snep’, max_acceptable_length=1048576,

recv_miu=1984, recv_buf=15)
Bases: threading.Thread

NFC Forum Simple NDEF Exchange Protocol server

process_get_request (ndef_message)
Handle Get requests. This method should be overwritten by a subclass of SnepServer to customize it’s
behavior. The default implementation simply returns nfc.snep.NotImplemented.

process_put_request (ndef_message)
Process a SNEP Put request. This method should be overwritten by a subclass of SnepServer to customize
it’s behavior. The default implementation simply returns nfc.snep.Success.

7.5.2 nfc.snep.SnepClient

class nfc.snep.SnepClient (llc, max_ndef msg_recv_size=1024)
Bases: object
Simple NDEF exchange protocol - client implementation

connect (service_name)
Connect to a SNEP server. This needs only be called to connect to a server other than the Default SNEP
Server at urn:nfc:sn:snep or if the client wants to send multiple requests with a single connection.

close ()
Close the data link connection with the SNEP server.

get_records (records=None, timeout=1.0)
Get NDEF message records from a SNEP Server.

New in version 0.13.

The ndef.Record list given by records is encoded as the request message octets input to
get_octets (). The return value is an nde f . Record list decoded from the response message octets
returned by get_octets (). Same as:

import ndef
send_octets
rcvd_octets

= ndef.message_encoder (records)
snep_client.get_octets (send_octets, timeout)

records = list (ndef.message_decoder (rcvd_octets))

136 Chapter 7. Module Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/functions.html#object
https://ndeflib.readthedocs.io/en/stable/ndef.html#ndef.Record
https://ndeflib.readthedocs.io/en/stable/ndef.html#ndef.Record

nfcpy documentation, Release 1.0.4

get_octets (octets=None, timeout=1.0)
Get NDEF message octets from a SNEP Server.

New in version 0.13.

If the client has not yet a data link connection with a SNEP Server, it temporarily connects to the default
SNEP Server, sends the message octets, disconnects after the server response, and returns the received
message octets.

put_records (records, timeout=1.0)
Send NDEF message records to a SNEP Server.

New in version 0.13.

The nde f . Record list given by records is encoded and then send via put_octets (). Same as:

import ndef
octets = ndef.message_encoder (records)
snep_client.put_octets (octets, timeout)

put_octets (octets, timeout=1.0)
Send NDEF message octets to a SNEP Server.

New in version 0.13.

If the client has not yet a data link connection with a SNEP Server, it temporarily connects to the default
SNEP Server, sends the message octets and disconnects after the server response.

7.6 nfc.handover

The nfc.handover module implements the NFC Forum Connection Handover 1.2 protocol as a server and client class
that simplify realization of handover selector and requester functionality.

7.6.1 nfc.handover.HandoverServer

class nfc.handover.HandoverServer (llc, request_size_limit=65536, recv_miu=1984,

recv_buf=15)
Bases: threading.Thread

NFC Forum Connection Handover server

process_handover_request_message (records)
Process a handover request message. The records argument holds a list of nde £ . Record objects decoded
from the received handover request message octets, where the first record typeisurn:nfc:wkt : Hr. The
method returns a list of nde f . Record objects with the first record typ urn:nfc:wkt : Hs.

This method should be overwritten by a subclass to customize it’s behavior. The default implementation
returns a nde f . HandoverSelectRecord with version 1.2 and no alternative carriers.

7.6.2 nfc.handover.HandoverClient

class nfc.handover.HandoverClient (l/ic)
Bases: object

NFC Forum Connection Handover client

7.6. nfc.handover 137

https://ndeflib.readthedocs.io/en/stable/ndef.html#ndef.Record
https://docs.python.org/3/library/threading.html#threading.Thread
https://ndeflib.readthedocs.io/en/stable/ndef.html#ndef.Record
https://ndeflib.readthedocs.io/en/stable/ndef.html#ndef.Record
https://ndeflib.readthedocs.io/en/stable/records/handover.html#ndef.HandoverSelectRecord
https://docs.python.org/3/library/functions.html#object

nfcpy documentation, Release 1.0.4

connect (recv_miu=248, recv_buf=2)
Connect to the remote handover server if available. Raises nfc.11lcp.ConnectRefused if the remote
device does not have a handover service or the service does not accept any more connections.

close ()
Disconnect from the remote handover server.

send_records (records)
Send handover request message records to the remote server.

recv_records (timeout=None)
Receive a handover select message from the remote server.

138 Chapter 7. Module Reference

Python Module Index

e

examples.listen, 36
examples.rfstate, 43

n

nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.
nfc.

clf,75

clf

clf

.acrl22, 108
clf.
clf.
clf.
clf.
.rcs380, 100
clf.
clf.

device, 95
pn531, 103
pn532, 104
pn533, 105

rcs956, 107
udp, 109

handover, 137
llcp, 134
snep, 136
tag, 114

tag.
tag.
tag.
tag.
tag.
tag.
tag.

ttl, 117
ttl_broadcom, 118
tt2, 119

tt2_nxp, 121
tt3,126
tt3_sony, 129
tt4, 133

139

nfcpy documentation, Release 1.0.4

140 Python Module Index

Index

Symbols

-bitrate {212,424}
tagtool.py-format command line
option, 30
—cl-echo SAP
llcp-test-client.py command line
option, 49
—co—echo SAP
llcp-test-client.py command line
option, 49
-crc N
tagtool.py-format-tt3 command line
option, 29
—delay INT
handover—-test-server.py command
line option, 59
—dep params
command line option, 36
—device PATH
beam.py command line option, 32
llcp-test-client.py command line
option, 49
llcp-test-server.py command line
option, 48
phdc-test—-agent.py-p2p command
line option, 66
phdc-test—-agent.py-tag command
line option, 68
phdc-test-manager.py command line
option, 65
snep-test-client.py command line
option, 56
snep-test-server.py command line
option, 55
tagtool.py command line option, 26
—device path
command line option, 36
—from BLOCK
tagtool.py-protect command line

option, 29
—idm HEX
tagtool.py-format command line
option, 30
—lang STRING
beam.py-send-text command line
option, 33
—-len N
tagtool.py-format-tt3 command line
option, 29
—-listen-time INT
beam.py command line option, 31
llcp-test-client.py command line
option,49
llcp-test-server.py command line
option, 48
phdc-test-agent .py-p2p command
line option, 66
phdc-test-manager.py command line

option, 64
snep-test-client.py command line
option, 56
snep-test-server.py command line
option, 54
-loop, -1

beam.py command line option, 31

llcp-test-client.py command line
option, 49

llcp-test-server.py command line
option, 47

phdc-test-agent.py-p2p command
line option, 66

phdc-test-agent.py-tag command
line option, 68

phdc-test-manager.py command line
option, 64

snep-test-client.py command line
option, 55

snep-test-server.py command line
option, 54

14

nfcpy documentation, Release 1.0.4

tagtool.py command line option, 26
-lto INT
beam.py command line option, 31
llcp-test-client.py command line
option, 49
llcp-test-server.py command line
option, 48
phdc-test—-agent.py-p2p command
line option, 66
phdc-test-manager.py command line
option, 64
snep-test-client.py command line
option, 55
snep-test-server.py command line
option, 54
-magic BYTE
tagtool.py-format-ttl command line
option, 28
-max N
tagtool.py-format-tt3 command line
option, 28
-miu INT
beam.py command line option, 3l
llcp-test-client.py command line
option, 49
llcp-test-server.py command line
option, 48
phdc-test—-agent.py-p2p command
line option, 66
phdc-test-manager.py command line
option, 64
snep-test-client.py command line
option, 55
snep-test-server.py command line
option, 54
-mode {t,i}
beam.py command line option, 31
llcp-test-client.py command line
option, 49
llcp-test-server.py command line
option, 48
phdc-test-agent.py-p2p command
line option, 66
phdc-test-manager.py command line
option, 64
snep-test-client.py command line
option, 55
snep-test-server.py command line
option, 54
-nbr N
tagtool.py-format-tt3 command line
option, 28
-nbw N
tagtool.py-format-tt3 command line

option, 28
-no-aggregation
beam.py command line option, 3l
llcp-test-client.py command line
option, 49
llcp-test-server.py command line
option, 48
phdc-test—-agent.py-p2p command
line option, 66
phdc-test-manager.py command line
option, 64
snep-test-client.py command line
option, 56
snep-test-server.py command line
option, 54
—nolog—-symm
beam.py command line option, 32
llcp-test-client.py command line
option, 49
llcp-test-server.py command line
option, 48
phdc-test-agent .py-p2p command
line option, 66
phdc-test-agent.py-tag command
line option, 68
phdc-test-manager.py command line
option, 65
snep-test-client.py command line
option, 56
snep-test-server.py command line
option, 55
tagtool.py command line option, 26
—pmm HEX
tagtool.py-format command line
option, 30
—quirks
handover-test-client.py command
line option, 61
handover-test-server.py command
line option, 59
—-recv-buf INT
handover-test-client.py command
line option,61
handover-test-server.py command
line option, 59
—-recv-miu INT
handover-test-client.py command
line option, 61
handover-test-server.py command
line option, 59
-relax
handover-test-client.py command
line option, 61
-rfu N

142

Index

nfcpy documentation, Release 1.0.4

tagtool.py-format-tt3 command line
option, 28

-rw N

tagtool.py-format-tt3 command line
option, 29

—rwa BYTE

tagtool.py-format-ttl command line
option, 28

—-select NUM

handover—-test-server.py command
line option,59

-select STRATEGY

beam.py-send-ndef command line
option, 33

—skip-local

-sys HEX,

handover-test—-server.py command
line option,59

—-sc HEX

tagtool.py-format command line
option, 30

—-technology {A,B,F}

phdc-test-manager.py command line
option, 65
tagtool.py command line option, 26

—timeit
beam.py-send command line option, 32
—tms BYTE
tagtool.py-format-ttl command line
option, 28
—unreadable
tagtool.py-protect command line
option, 29
-ver x.y
tagtool.py-format-ttl command line
option, 28
tagtool.py-format-tt3 command line
option, 28

-version x.y

tagtool.py-load command line
option, 27

-wait

phdc-test-manager.py command line
option, 65
tagtool.py command line option, 26

-wf N

tagtool.py-format-tt3 command line
option, 29

-wipe BYTE

_T,

tagtool.py-load command line
option, 27

—-test-all

llcp-test-client.py command line
option, 49

phdc-test-agent.py-p2p command

-d

-d,

-f

~h,

-1

7k,

-1,

-n

line option, 66

phdc-test-agent.py-tag command
line option, 68

snep-test-client.py command line
option, 55

MODULE

beam.py command line option, 32

llcp-test-client.py command line
option, 49

llcp-test-server.py command line
option, 48

phdc-test-agent.py-p2p command
line option, 66

phdc-test—-agent.py-tag command
line option, 68

phdc-test-manager.py command line
option, 65

snep-test-client.py command line
option, 56

snep-test-server.py command line
option, 55

tagtool.py command line option, 26

—debug

command line option, 36

LOGFILE

beam.py command line option, 32

llcp-test-client.py command line
option, 49

llcp-test-server.py command line
option, 48

phdc-test-agent.py-p2p command
line option, 66

phdc-test-agent.py-tag command
line option, 68

phdc-test-manager.py command line
option, 65

snep-test-client.py command line
option, 56

snep-test-server.py command line
option, 55

tagtool.py command line option, 26

—help

command line option, 36

number

command line option, 36

—keep

tagtool.py-emulate command line
option, 30

—-loop

tagtool.py-emulate command line
option, 30

STRING

beam.py-send-file command line
option, 33

Index

143

nfcpy documentation, Release 1.0.4

-o FILE
tagtool.py-dump command line
option, 27
-p FILE
tagtool.py-emulate command line
option, 30

-p PASSWORD
tagtool.py command line option, 26
tagtool.py-protect command line
option, 29

beam.py command line option, 32

llcp-test-client.py command line
option, 49

llcp-test-server.py command line
option, 48

phdc-test—-agent.py-p2p command
line option, 66

phdc-test-agent.py-tag command
line option, 68

phdc-test-manager.py command line
option, 65

snep-test-client.py command line
option, 56

snep-test-server.py command line
option, 54

tagtool.py command line option, 26

-r, -—-repeat
command line option, 36

-s SIZE
tagtool.py-emulate command line
option, 30

-t N, —-test N
handover-test-client.py command
line option, 60
llcp-test-client.py command line
option, 49
phdc-test-agent.py-p2p command
line option, 66
phdc-test-agent.py-tag command
line option, 68
snep-test-client.py command line
option, 55
-t STRING
beam.py-send-file command line
option, 33
-t seconds
command line option, 36

tagtool.py-show command line
option, 27
-v, -—verbose
command line option, 36
-w seconds

command line option, 36

A

accept () (nfc.llcp.Socket method), 135
authenticate () (nfc.tag.Tag method), 117
authenticate () (nfc.tag.tt2_nxp.MifareUltralightC
method), 122
authenticate () (nfe.tag.tt2_nxp.NTAG2I1x method),

123

authenticate () (nfc.tag.tt3_sony.FelicaLite
method), 131

authenticate () (nfc.tag.tt3_sony.FelicaLiteS
method), 132

B

beam.py command line option
—device PATH, 32
—listen—-time INT, 31
-loop, -1,3l
-lto INT, 31
-miu INT, 31
-mode {t,1i}, 3l
-no—-aggregation, 31
-nolog-symm, 32
-d MODULE, 32
-f LOGFILE, 32
-q, 32
beam.py-recv-file command line option
FILE, 34
beam.py-recv-send command line option
TRANSLATIONS, 34
beam.py-send command line option
—timeit, 32
beam.py-send-file command line option
-n STRING, 33
-t STRING, 33
FILE, 33
beam.py-send-link command line option
TITLE, 33
URI, 33
beam.py-send-ndef command line option
-select STRATEGY, 33
FILE, 33
beam.py-send-text command line option
-lang STRING, 33
TEXT, 33
bind () (nfc.licp.Socket method), 134
BlockCode (class in nfc.tag.tt3), 126
BrokenLinkError, 85, 95
brty (nfc.clf.LocalTarget attribute), 84, 94
brty (nfc.clf.RemoteTarget attribute), 84, 94

C

capacity (nfc.tag.Tag. NDEF attribute), 115

144

Index

nfcpy documentation, Release 1.0.4

chipset_name (nfc.clf.device.Device attribute), 95
close () (nfe.clf.ContactlessFrontend method), 76, 86
close () (nfc.handover.HandoverClient method), 138
close () (nfc.llcp.Socket method), 135
close () (nfc.snep.SnepClient method), 136
command line option

—dep params, 36

—-device path, 36

-d, -debug, 36
-h, -help, 36
—1 number, 36
-r, -repeat, 36

-t seconds, 36
-v, -verbose, 36
-w seconds, 36
CommunicationError, 85,94, 100
connect () (in module nfc.clf.device), 95
connect () (nfc.clf.ContactlessFrontend method), 77,
86
connect ()
137
connect () (nfc.llcp.Socket method), 135
connect () (nfc.snep.SnepClient method), 136
ContactlessFrontend (class in nfc.clf), 75, 85

D

Device (class in nfc.clf.acri22), 108
Device (class in nfc.clf.device), 95
Device (class in nfc.clf.pn531), 103
Device (class in nfc.clf.pn532), 104
Device (class in nfc.clf-pn533), 106
Device (class in nfc.clf-res380), 100
Device (class in nfc.clf.rcs956), 107
Device (class in nfc.clf.udp), 109
dump () (nfc.tag.Tag method), 116

(nfc.handover. HandoverClient method),

dump () (nfc.tag.ttl. TypelTag method), 118
dump () (nfc.tag.ttl_broadcom.Topaz method), 118
dump () (nfc.tag.ttl_broadcom.Topaz512 method), 119
dump () (nfc.tag.tt2. Type2Tag method), 120
dump () (nfc.tag.tt2_nxp.MFOULI I method), 125
dump () (nfc.tag.tt2_nxp.MFOUL21 method), 125
dump () (nfc.tag.tt2_nxp.MFOULHI 1 method), 125
dump () (nfc.tag.tt2_nxp.MFOULH21 method), 125
dump () (nfc.tag.tt2_nxp.MifareUltralight method), 121
dump () (nfc.tag.tt2_nxp.MifareUltralightC method),
122
dump () (nfc.tag.tt2_nxp.NT3HI1101 method), 126
dump () (nfc.tag.tt2_nxp.NT3H1201 method), 126
dump () (nfc.tag.tt2_nxp.NTAG203 method), 122
dump () (nfc.tag.tt2_nxp.NTAG210 method), 124
dump () (nfc.tag.tt2_nxp.NTAG212 method), 124
dump () (nfc.tag.tt2_nxp.NTAG213 method), 124
dump () (nfc.tag.tt2_nxp.NTAG215 method), 124
dump () (nfc.tag.tt2_nxp.NTAG216 method), 124

dump () (nfc.tag.tt3. Type3Tag method), 127

dump () (nfc.tag.tt3_sony.FelicaLite method), 131

dump () (nfc.tag.tt3_sony.FelicaLiteS method), 132

dump () (nfc.tag.tt3_sony.FelicaStandard method), 129
(

dump () (nfc.tag.tt4. Type4Tag method), 133
dump_service () (nfc.tag.tt3. Type3Tag method), 127

E

errno (nfc.tag. TagCommandError attribute), 117

Error, 84, 94

examples.listen (module), 36

examples.rfstate (module), 43

exchange () (nfc.clf.ContactlessFrontend method), 84,
93

F

Felicalite (class in nfc.tag.tt3_sony), 130
Felicalite.NDEF (class in nfc.tag.tt3_sony), 131
FelicalLiteS (class in nfc.tag.tt3_sony), 132
FelicalLiteS.NDEF (class in nfc.tag.tt3_sony), 132
FelicaMobile (class in nfc.tag.tt3_sony), 130
FelicaPlug (class in nfc.tag.tt3_sony), 133
FelicaStandard (class in nfc.tag.tt3_sony), 129
FILE
beam.py-recv-file command line
option, 34
beam.py-send-file command line
option, 33
beam.py-send-ndef command line
option, 33
tagtool.py-emulate command line
option, 30
tagtool.py—-load command line
option, 27
format () (nfc.tag.Tag method), 116
format () (nfc.tag.ttl_broadcom.Topaz method), 119

format () (nfc.tag.ttl_broadcom.Topaz512 method),
119

format () (nfc.tag.tr2. Type2Tag method), 120

format () (nfc.tag.tt3. Type3Tag method), 127

format () (nfc.tag.tt3_sony.FelicaLite method), 131

format () (nfc.tag.tt4. Type4Tag method), 133

G

get_max_recv_data_size()
(nfc.clf.device.Device method), 100
get_max_recv_data_size ()
(nfc.clf-res380.Device method), 102
get_max_recv_data_size () (nfc.clf.udp.Device
method), 114
get_max_send_data_size ()
(nfc.clf.device.Device method), 99
get_max_send_data_size ()
(nfc.clf.rcs380.Device method), 102

Index

145

nfcpy documentation, Release 1.0.4

get_max_send_data_size ()
method), 113
get_octets () (nfc.snep.SnepClient method), 136
get_records () (nfc.snep.SnepClient method), 136
getpeername () (nfc.llcp.Socket method), 135
getsockname () (nfc.llep.Socket method), 135
getsockopt () (nfc.llep.Socket method), 134

handover-test-client.py command line
option
—-quirks, 61

—-recv-buf INT, 61

-recv-miu INT, 61

-relax, 61

-t N, —-test N,60
handover-test-server.py command line

option

—-delay INT, 59

-quirks, 59

-recv-buf INT, 59

—-recv-miu INT, 59

—-select NUM, 59

-skip-local, 59
HandoverClient (class in nfc.handover), 137
HandoverServer (class in nfc.handover), 137
has_changed (nfc.tag. Tag. NDEF attribute), 115

identifier (nfc.tag.Tag attribute), 116
is_authenticated (nfc.tag.Tag attribute), 116
is_present (nfc.tag. Tag attribute), 116
is_readable (nfc.tag. Tag. NDEF attribute), 115
is_writeable (nfc.tag.Tag. NDEF attribute), 115

L

length (nfc.tag.Tag. NDEF attribute), 114

listen () (nfc.clf.ContactlessFrontend method), 82, 92

listen () (nfc.llcp.Socket method), 135
listen_dep () (nfc.clf.acri22.Device method), 109
listen_dep () (nfc.clf.device.Device method), 98
listen_dep () (afc.clf.pn531.Device method), 104
listen_dep () (afc.clfpn532.Device method), 105
listen_dep () (afc.clfpn533.Device method), 106
listen_dep () (nfe.clfrcs380.Device method), 101
listen_dep () (nfc.clf-rcs956.Device method), 108
listen_dep () (nfc.clfudp.Device method), 112
listen_tta () (afe.clf.acri22.Device method), 109
listen_tta () (nfc.clf.device.Device method), 97
() (nfc.clf.pn531.Device method), 104
() (nfc.clf.pn532.Device method), 105
() (nfc.clf.pn533.Device method), 106
() (nfc.clf.res380.Device method), 101
() (nfc.clf.res956.Device method), 107

listen_tta
listen_tta
listen_tta
listen_tta
listen_tta

(nfc.clf.udp.Device

listen_tta
listen_ttb
listen_ttb
listen_ttb
listen_ttb
listen_ttb
listen_ttb
listen_ttb

() (nfc.clf.udp.Device method), 111
(
(
(
(
(
(
(
listen_ttb(
(
(
(
(
(
(
(

)
) (nfc.clf.acr122.Device method), 109
) (nfc.clf.device.Device method), 97
) (nfc.clf.pn531.Device method), 104
) (nfc.clf.pn532.Device method), 105
) (nfc.clf.pn533.Device method), 106
) (nfc.clf.res380.Device method), 101
) (nfc.clf.res956.Device method), 108
) (nfc.clf.udp.Device method), 111
) (nfc.clf.acri22.Device method), 109
) (nfc.clf.device.Device method), 98
) (nfc.clf.pn531.Device method), 104
) (nfc.clf.pn532.Device method), 105
) (nfc.clf.pn533.Device method), 106
listen_ttf () (nfe.clf-rcs380.Device method), 101
listen_ttf () (nfe.clfres956.Device method), 108
listen_ttf () (nfe.clfudp.Device method), 112
11c (nfc.llcp.Socket attribute), 134
llcp-test-client.py command line
option

—cl-echo SAP, 49

—co—echo SAP, 49

—-device PATH, 49

—-listen-time INT, 49

-loop, -1,49

-1lto INT,49

-miu INT, 49

-mode {t,1i},49

-no-aggregation, 49

-nolog-symm, 49

-T, —-test-all,49

-d MODULE, 49

-f LOGFILE,49

-q, 49

-t N, -test N,49
llcp-test-server.py command line

option

—device PATH, 48

—listen—-time INT, 48

-loop, -1,47

-1lto INT,48

-miu INT, 48

-mode {t,i},48

-no—-aggregation, 48

-nolog-symm, 48

—-d MODULE, 48

-f LOGFILE,48

-q, 48
LocalTarget (class in nfc.clf), 84, 94

listen_ttf
listen_ttf
listen_ttf
listen_ttf
listen_ttf

LogicalLinkController (class in nfc.llcp.lic), 136

M

max_recv_data_size (nfc.clf.ContactlessFrontend

attribute), 84, 94

146

Index

nfcpy documentation, Release 1.0.4

max_send_data_size (nfc.clf.ContactlessFrontend

attribute), 84, 93
MFOUL11 (class in nfc.tag.tt2_nxp), 125
MFOUL21 (class in nfc.tag.tt2_nxp), 125
MFOULH11 (class in nfc.tag.tt2_nxp), 125
MFOULH21 (class in nfc.tag.tt2_nxp), 125
MifareUltralight (class in nfc.tag.tt2_nxp), 121

MifareUltralightC (class in nfc.tag.tt2_nxp), 121

MifareUltralightC.NDEF (class
nfc.tag.tt2_nxp), 121

MifareUltralightEV1 (class in nfc.tag.tt2_nxp),

125
mute () (nfe.clf.device.Device method), 95
mute () (afc.clf.res380.Device method), 101
mute () (nfe.clf-res956.Device method), 107
mute () (nfc.clf.udp.Device method), 109
N

ndef (nfc.tag.Tag attribute), 116
nfc.clf (module), 75
nfc.clf.acrl22 (module), 108
nfc.clf.device (module), 95
nfc.clf.pn531 (module), 103
nfc.clf.pn532 (module), 104
nfc.clf.pn533 (module), 105
nfc.clf.rcs380 (module), 100
nfc.clf.rcs956 (module), 107
nfc.clf.udp (module), 109
nfc.ContactlessFrontend (built-in class), 75
nfc.handover (module), 137
nfc.llcp (module), 134

nfc.snep (module), 136

nfc.tag (module), 114

nfc.tag.ttl (module), 117
nfc.tag.ttl_broadcom (module), 118
nfc.tag.tt?2 (module), 119
nfc.tag.tt2_nxp (module), 121
nfc.tag.tt3 (module), 126
nfc.tag.tt3_sony (module), 129
nfc.tag.tt4 (module), 133
NT3H1101 (class in nfc.tag.tt2_nxp), 125
NT3H1201 (class in nfc.tag.tt2_nxp), 126
NTAG203 (class in nfc.tag.tt2_nxp), 122
NTAG210 (class in nfc.tag.tt2_nxp), 124
NTAG212 (class in nfc.tag.tt2_nxp), 124
NTAG213 (class in nfc.tag.tt2_nxp), 124
NTAG215 (class in nfc.tag.tt2_nxp), 124
NTAG216 (class in nfc.tag.tt2_nxp), 124
NTAG21x (class in nfc.tag.tt2_nxp), 123
NTAG21x .NDEF (class in nfc.tag.tt2_nxp), 123
NTAGI2C (class in nfc.tag.tt2_nxp), 125

O

octets (nfc.tag. Tag. NDEF attribute), 115

open () (nfc.clf.ContactlessFrontend method), 76, 85

P

pack () (nfc.tag.tt3.BlockCode method), 126
pack () (nfc.tag.tt3.ServiceCode method), 126
phdc-test-agent .py-p2p command line
option
—device PATH, 66
-listen-time INT, 66
-loop, -1,66
-lto INT, 66
-miu INT, 66
-mode {t,1i}, 66
-no-aggregation, 66
-nolog-symm, 66
-T, —-test-all, 66
—-d MODULE, 66
-f LOGFILE, 66
—-q, 66
-t N, —-test N,66
phdc-test-agent.py-tag command line
option
—device PATH, 68
-loop, -1,68
-nolog-symm, 68
-T, —-test-all, 68
-d MODULE, 68
-f LOGFILE, 68
-q, 68
-t N, —-test N,68
phdc-test-manager.py command line
option
—device PATH, 65
—-listen-time INT, 64
-loop, -1,64
-lto INT, 64
-miu INT, 64
-mode {t,1i}, 64
-no-aggregation, 64
-nolog-symm, 65
-technology {A,B,F},65
-wait, 65
-d MODULE, 65
-f LOGFILE, 65
—-q, 65
poll () (nfc.llep.Socket method), 135
polling () (nfc.tag.tt3.Type3Tag method), 127
process_get_request ()
method), 136
process_handover_request_message ()
(nfc.handover. HandoverServer method), 137
process_put_request ()
method), 136
product_name (nfc.clf.device.Device attribute), 95

Index

147

(nfc.snep.SnepServer

(nfc.snep.SnepServer

nfcpy documentation, Release 1.0.4

protect () (nfc.tag. Tag method), 116

protect () (nfc.tag.ttl. Typel Tag method), 118
protect () (nfc.tag.ttl_broadcom.Topaz method), 119
protect () (nfc.tag.ttl_broadcom.Topaz512 method),

119
protect () (nfc.tag.tt2.Type2Tag method), 120
protect ()
method), 122

protect () (nfc.tag.tt2_nxp.NTAG203 method), 122

protect () (nfc.tag.tt2_nxp.NTAG21x method), 123

protect () (nfc.tag.tt3_sony.FelicaLite method), 131
protect () (nfc.tag.tt3_sony.FelicaLiteS method), 132

ProtocolError, 85, 94
put_octets () (nfc.snep.SnepClient method), 137

put_records () (nfc.snep.SnepClient method), 137

R

read () (nfc.tag.tt2.Type2Tag method), 120
read_all () (nfc.tag.ttl. Typel Tag method), 118
read_block () (nfc.tag.ttl. TypelTag method), 118
read_byte () (nfc.tag.ttl. TypelTag method), 118
read_from_ndef_service()
(nfc.tag.tt3.Type3Tag method), 128
read_id () (nfc.tag.ttl. TypelTag method), 118

read_segment () (nfc.tag.ttl. TypelTag method), 118
(nfc.tag.tt3_sony.FelicaLite

read_with_mac ()
method), 131
read_without_encryption ()
(nfc.tag.tt3. Type3Tag method), 128
read_without_mac ()
method), 131
records (nfc.tag. Tag. NDEF attribute), 115
recv () (nfc.llcp.Socket method), 135
recv_records ()
method), 138
recvfrom () (nfc.llcp.Socket method), 135
RemoteTarget (class in nfc.clf), 84, 94
request_response ()

(nfc.tag.tt2_nxp.MifareUltralightC

(nfc.tag.1t3_sony.FelicaLite

(nfc.handover. HandoverClient

send () (nfc.llcp.Socket method), 135
send_apdu () (nfc.tag.tt4.Typed4Tag method), 133

send_cmd_recv_rsp () (nfc.clf.device.Device
method), 99

send_cmd_recv_rsp () (nfc.clf-pn533.Device
method), 106

send_cmd_recv_rsp () (nfc.clf.res380.Device

method), 102

send_cmd_recv_rsp () (nfc.clf.udp.Device method),

113
send_cmd_recv_rsp () (nfc.tag.tt3.Type3Tag
method), 129

send_records ()
method), 138

send_rsp_recv_cmd () (nfc.clf.device.Device
method), 99

send_rsp_recv_cmd () (nfc.clf.pn533.Device
method), 106

send_rsp_recv_cmd () (nfc.clf:res380.Device

method), 102

send_rsp_recv_cmd () (nfc.clf.udp.Device method),

113
sendto () (nfc.llcp.Socket method), 135

sense () (nfc.clf.ContactlessFrontend method), 80, 90

sense_dep (
sense_dep
sense_dep
sense_dep
sense_dep
sense_dep
sense_dep
sense_dep
sense_tta
sense_tta
sense_tta
sense_tta
sense_tta
sense_tta
sense_tta

(nfc.clf.acri22.Device method), 108
(nfc.clf.device.Device method), 96
(nfc.clf-pn531.Device method), 104
(nfc.clf-pn532.Device method), 105
(nfc.clf.pn533.Device method), 106
(nfc.clf-res380.Device method), 101
(nfc.clf-res956.Device method), 107
(nfc.clf-udp.Device method), 110
(nfc.clf.acri22.Device method), 108
(nfc.clf.device.Device method), 95
(nfc.clf-pn531.Device method), 103
(nfc.clf.pn532.Device method), 105
(nfc.clf-pn533.Device method), 106
(nfc.clf-res380.Device method), 101
(nfc.clf:rcs956.Device method), 107
(nfc.clf-udp.Device method), 109
(nfc.clf.acri22.Device method), 108
(nfc.clf-device.Device method), 96
(nfc.clf-pn531.Device method), 103
(nfc.clf-pn532.Device method), 105
(nfc.clf.pn533.Device method), 106
(nfc.clf-res380.Device method), 101
(nfc.clf-res956.Device method), 107
(nfc.clf-udp.Device method), 110
(nfc.clf.acri22.Device method), 108

sense_ttb
sense_ttb
sense_ttb
sense_ttb
sense_ttb
sense_ttb
sense_ttb
sense_ttb
sense_ttf

(nfc.handover. HandoverClient

(nfc.tag.tt3_sony.FelicaStandard method),
130

request_service ()
(nfc.tag.tt3_sony.FelicaStandard method),
130

request_system_code ()
(nfc.tag.tt3_sony.FelicaStandard method),
130

resolve () (nfc.llcp.Socket method), 134

S

search_service_code ()
(nfc.tag.tt3_sony.FelicaStandard method),

sector_select ()

130
(nfc.tag.tt2.Type2Tag method),
121

sense_ttf
sense_ttf
sense_ttf
sense_ttf
sense_ttf

(
(
(
(
(
(
(
(
(
(
(
(
(
(
sense_tta(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(nfc.clf.device.Device method), 96

(nfc.clf-pn531.Device method), 104
(nfc.clf.pn532.Device method), 105
(nfc.clf-pn533.Device method), 106
(nfc.clf-res380.Device method), 101

148

Index

nfcpy documentation, Release 1.0.4

sense_ttf () (nfe.clf.res956.Device method), 107
sense_ttf () (nfc.clf.udp.Device method), 110
ServiceCode (class in nfc.tag.1t3), 126
setsockopt () (nfe.llep.Socket method), 134
signature (nfc.tag.tt2_nxp.NTAG21x attribute), 123
snep-test-client.py command line
option
—device PATH, 56
-listen-time INT, 56
-loop, -1,55
-1lto INT,55
-miu INT, 55
-mode {t,i},55
-no-aggregation, 56
-nolog-symm, 56
-T, —-test-all,55
-d MODULE, 56
-f LOGFILE, 56
-q, 56
-t N, —-test N,55
snep-test-server.py command line
option
—-device PATH, 55
—-listen-time INT, 54
-loop, -1,54
-lto INT, 54
-miu INT, 54
-mode {t,1i},54
-no—-aggregation, 54
-nolog-symm, 55
—-d MODULE, 55
-f LOGFILE, 55
-q, 54
SnepClient (class in nfc.snep), 136
SnepServer (class in nfc.snep), 136
Socket (class in nfc.llcp), 134
StatusError, 100
synchronize () (nfc.tag.tt2. Type2TagMemoryReader
method), 121

T

Tag (class in nfc.tag), 114
tag (nfc.tag. Tag. NDEF attribute), 114
Tag.NDEF (class in nfc.tag), 114
TagCommandError, 117
TagEmulation (class in nfc.tag), 117
tagtool.py command line option
—device PATH, 26
-loop, -1,26
-nolog-symm, 26
-technology {A,B,F},26
-wait, 26
—-d MODULE, 26
-f LOGFILE, 26

-p PASSWORD, 26
-q, 26
tagtool.py-dump command line option
-0 FILE,?27
tagtool.py-emulate command line option
-k, -keep, 30
-1, -loop, 30
-p FILE, 30
-s SIZE, 30
FILE, 30
tagtool.py-format command line option
-bitrate {212,424},30
-idm HEX, 30
—-pmm HEX, 30
-sys HEX, -sc HEX, 30
tagtool.py-format-ttl command line
option
-magic BYTE, 28
-rwa BYTE, 28
-tms BYTE, 28
-ver x.y,28
tagtool.py-format-tt3 command line
option
-crc N, 29
-len N, 29
-max N, 28
-nbr N, 28
N, 28
-rfu N, 28
-rw N, 29
-ver x.y,28
-wf N, 29
tagtool.py-load command line option
-version x.y,27
-wipe BYTE, 27
FILE, 27
tagtool.py-protect command line option
—from BLOCK, 29
—unreadable, 29
-p PASSWORD, 29
tagtool.py-show command line option
-v, 27
TEXT
beam.py-send-text command line
option, 33
TimeoutError, 85, 95
TITLE
beam.py-send-link command line
option, 33
Topaz (class in nfc.tag.ttl_broadcom), 118
Topaz512 (class in nfc.tag.ttl_broadcom), 119
transceive () (nfc.tag.tt2. Type2Tag method), 121
transceive () (nfc.tag.tt4. Type4Tag method), 133
TRANSLATIONS

-nbw

Index

149

nfcpy documentation, Release 1.0.4

beam.py-recv-send command line
option, 34
TransmissionError, 85,95
turn_off_led_and_buzzer ()
(nfc.clf.acri22.Device method), 109
turn_off_led_and_buzzer ()
(nfc.clf.device.Device method), 100
turn_on_led_and_buzzer ()
(nfc.clf.acr122.Device method), 109
turn_on_led_and_buzzer ()
(nfc.clf-device.Device method), 100
TypelTag (class in nfc.tag.ttl), 117
TypelTag.NDEF (class in nfc.tag.ttl), 118
TypelTagCommandError, 117
Type2Tag (class in nfc.tag.tt2), 120
Type2Tag.NDEF (class in nfc.tag.1t2), 120
Type2TagCommandError, 119
Type2TagMemoryReader (class in nfc.tag.tt2), 121
Type3Tag (class in nfc.tag.tt3), 126
Type3Tag.NDEF (class in nfc.tag.1t3), 126
Type3TagCommandError, 126
Type3TagEmulation (class in nfc.tag.tt3), 129
TypedATaqg (class in nfc.tag.tt4), 134
TypedBTag (class in nfc.tag.tt4), 134
TypedTag (class in nfc.tag.tt4), 133
TypedTag.NDEF (class in nfc.tag.tt4), 133
Typed4TagCommandError, 133

U

unpack () (nfe.tag.tt3.ServiceCode class method), 126
UnsupportedTargetError, 85, 94
URI
beam.py-send-1link command line
option, 33

Vv

vendor_name (nfc.clf.device.Device attribute), 95

W

write () (nfc.tag.tt2. Type2Tag method), 120
write_block () (nfc.tag.ttl. TypelTag method), 118
write_byte () (nfc.tag.ttl. TypelTag method), 118
write_to_ndef_service () (nfc.tag.tt3.Type3lag
method), 129
write_with_mac () (nfc.tag.tt3_sony.FelicaLiteS
method), 132
write_without_encryption ()
(nfc.tag.tt3.Type3Tag method), 128
write_without_mac () (nfc.tag.tt3_sony.FelicalLite
method), 132

150 Index

	Overview
	Requirements
	Supported Devices
	Implementation Status
	References

	Getting started
	Installation
	Open a local device
	Read and write tags
	Emulate a card
	Work with a peer

	Logical Link Control Protocol
	Simple NDEF Exchange Protocol
	Default Server
	Using SNEP Put
	Private Servers

	Example Programs
	tagtool.py
	beam.py
	sense.py
	listen.py
	rfstate.py

	Interoperability Tests
	Logical Link Control Protocol
	Simple NDEF Exchange Protocol
	Connection Handover
	Personal Health Device Communication
	Generate Test Tags

	Module Reference
	nfc
	nfc.clf
	nfc.tag
	nfc.llcp
	nfc.snep
	nfc.handover

	Python Module Index
	Index

